Differentially Expressed Proteins in Corynebacterium pseudotuberculosis During Biofilm Formation

https://doi.org/10.55230/mabjournal.v54i3.3010

Authors

  • Anati Abd Rashid Syaida Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Faez Firdaus Abdullah Jesse Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Mohd Shafiq Aazmi Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Mohd Izwan Mohamad Yusof Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Norfatimah Mohamed Yunus
  • Mohd Fakharul Zaman Raja Yahya Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam 42300, Shah Alam, Selangor, Malaysia

Keywords:

Biofilm, Corynebacterium pseudotuberculosis, Caseous lymphadenitis, Proteomics

Abstract

Corynebacterium pseudotuberculosis is a non-motile, β-hemolytic bacterium and causative factor of caseous lymphadenitis. The disease affects sheep and goats, causing impaired wool production, weight loss, and carcass condemnation. Our previous work has elucidated the morphology, heterogeneity, and antimicrobial susceptibility of C. pseudotuberculosis biofilm. However, the information on proteome expression underlying C. pseudotuberculosis biofilm development remains scarce. Thus, the objective of the present work is to compare the whole-cell proteome profiles between planktonic and biofilm fractions of C. pseudotuberculosis and identify C. pseudotuberculosis proteins and biological pathways showing differential expression. C. pseudotuberculosis biofilm was grown in a six-well microplate for 24 hr at 37°C. Polyacrylamide gel electrophoresis combined with tandem mass spectrometry and bioinformatics analysis was conducted to analyze proteome expression. Results demonstrated differential expression of seven SDS-PAGE protein bands (33.7 – 150 kDa) in comparison between the planktonic and biofilm fractions of C. pseudotuberculosis. Overall, 711 proteins that showed differential expression were successfully identified, while the protein-protein interaction network revealed a total of 3868 functional linkages among the differentially expressed proteins. Fifty-seven hub proteins with more than 10 functional linkages were identified, including large subunit ribosomal protein L3, translation initiation factor IF-2, multifunctional oxoglutarate decarboxylase, and DNA-dependent RNA polymerase. Functional enrichment analysis revealed the association of differentially expressed C. pseudotuberculosis proteins with secondary metabolite metabolism (p-value<0.05). In conclusion, differential protein expressions in C. pseudotuberculosis may modulate adaptive responses to environmental stressors, thereby promoting biofilm formation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Braithwaite, C.E., Smith, E.E., Songer, J.G. & Reine, A.H. 1993. Characterization of detergent-soluble proteins of Corynebacterium pseudotuberculosis. Veterinary Microbiology, 38(1-2): 59-70. DOI: https://doi.org/10.1016/0378-1135(93)90075-I

Cho, J.A., Jeon, S., Kwon, Y., Roh, Y.J., Lee, C.H. & Kim, S.J. 2024. Comparative proteomics analysis of biofilms and planktonic cells of Enterococcus faecalis and Staphylococcus lugdunensis with contrasting biofilm-forming ability. PLoS One, 19(5): e0298283. DOI: https://doi.org/10.1371/journal.pone.0298283

Da Silva, W.M., Seyffert, N., Silva, A. & Azevedo, V. 2021. A journey through the Corynebacterium pseudotuberculosis proteome promotes insights into its functional genome. PeerJ, 9: e12456. DOI: https://doi.org/10.7717/peerj.12456

De Sá, M.C.A., Da Silva, W.M., Rodrigues, C.C.S., Rezende, C.P., Marchioro, S.B., Rocha, J.T.R., de Sousa, T.J., Oliveira, H.P., Costa, M.M., Figueiredo, H.C.P., Portela, R.D., Castro, T.L.P., Azevedo, V., Seyffert, N. & Meyer, R. 2021. Comparative proteomic analyses between biofilm-forming and non-biofilm-forming strains of Corynebacterium pseudotuberculosis isolated from goats. Frontiers in Veterinary Science, 8: 614011. DOI: https://doi.org/10.3389/fvets.2021.614011

Dopuđ, M., Reil, I., Zdelar-Tuk, M., Špičić, S. & Duvnjak, S. 2025. Caseous lymphadenitis in sheep and goats-"Cheese glands". Veterinarska Stanica, 56(3): 303-316. DOI: https://doi.org/10.46419/vs.56.3.8

dos Santos, R.M., Cerqueira, S.M.A., Andrade, C.L.B., Müller, G.S., de Menezes Santos, V.C., de Araújo, H.R., Queiroz, S., Conceicao, R.R., Oliveira, L.G.F., Ribeiro, M.B., Marchioro, S., de Moura-costa, L.F., de Sousa, F.S.C., de Sá, M.D.C.A., Filho, J.T.R.R., Trindade, S.C., Netto, E.M., Meyer, R. & Freire, S.M. 2022. Human seroreactivity to secreted molecules of Corynebacterium pseudotuberculosis. Advances in Microbiology, 12(3): 150-158. DOI: https://doi.org/10.4236/aim.2022.123012

Dsouza, F.P., Dinesh, S. & Sharma, S. 2024. Understanding the intricacies of microbial biofilm formation and its endurance in chronic infections: A key to advancing biofilm-targeted therapeutic strategies. Archives of Microbiology, 206(2): 85. DOI: https://doi.org/10.1007/s00203-023-03802-7

Eberle, R.J., Kawai, L.A., de Moraes, F.R., Tasic, L., Arni, R.K. & Coronaso, M.A. 2018. Biochemical and biophysical characterization of a mycoredoxin protein glutaredoxin A1 from Corynebacterium pseudotuberculosis. International Journal of Biological Macromolecules, 107(Part B): 1999-2007. DOI: https://doi.org/10.1016/j.ijbiomac.2017.10.063

Folador, E.L., de Carvalho, P.V.S.D., Silva, W.M., Ferreira, R.S., Silva, A., Gromiha, M., Ghosh, P., Barth, D., Azevedo, V. & Röttger, R. 2016. In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein-protein interaction networks. BMC Systems Biology, 10: 103. DOI: https://doi.org/10.1186/s12918-016-0346-4

Formstone, A., Carballido-López, R., Noirot, P., Errington, J. & Scheffers, D.J. 2008. Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis. Journal of Bacteriology, 190(5): 1812-1821. DOI: https://doi.org/10.1128/JB.01394-07

Gomide, A.C.P., de Sá, P.G., Cavalcante, A.L.Q., de Jesus Sousa, T., Gomes, L.G.R., Ramos, R.T.J., Azevedo, V., Silva, A. & Folador, A.R.C. 2017. Heat shock stress: profile of differential expression in Corynebacterium pseudotuberculosis biovar equi. Gene, 645: 124-130. DOI: https://doi.org/10.1016/j.gene.2017.12.015

Gomide, A.C.P., Ibraim, I.C., Alves, J.T.C., de Sá, P.G., de Oliveira Silva, Y.R., Santana, M.P., Silva, W.M., Folador, E.L., Mariano, D.C.B., de Paula Castro, T.L., Barbosa, S., Dorella, F.A., Carvalho, A.F., Pereira, F.L., Leal, C.A.G., Figueiredo, H.C.P., Azevedo, V., Silva, A. & Folador, A.R.C. 2018. Transcriptome analysis of Corynebacterium pseudotuberculosis biovar equi in two conditions of the environmental stress. Gene, 677: 349-360. DOI: https://doi.org/10.1016/j.gene.2018.08.028

Huang, Z., Wang, Y.H., Zhu, H.Z., Andrianova, E.P., Jiang, C.Y., Li, D., Ma, L., Feng, J., Liu, Z.P., Xiang, H., Zhulin, I.B. & Liu, S.J. 2019. Cross talk between chemosensory pathways that modulate chemotaxis and biofilm formation. mBio, 10(1): e02876-18. DOI: https://doi.org/10.1128/mBio.02876-18

Isa, S.F.M., Hamida, U.M.A. & Yahya, M.F.Z.R. 2022. Treatment with the combined antimicrobials triggers proteomic changes in Pseudomonas aeruginosa - Candida albicans polyspecies biofilms. ScienceAsia, 48(2): 215-222. DOI: https://doi.org/10.2306/scienceasia1513-1874.2022.020

Li, L., Zhu, J., Yang, K., Xu, Z., Liu, Z. & Zhou, R. 2014. Changes in gene expression of Actinobacillus pleuropneumoniae in response to anaerobic stress reveal induction of central metabolism and biofilm formation. Journal of Microbiology, 52(6): 473-481. DOI: https://doi.org/10.1007/s12275-014-3456-y

Monds, R.D., Newell, P.D., Wagner, J.C., Schwartzman, J.A., Lu, W., Rabinowitz, J.D. & O'Toole, G.A. 2010. Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways. Journal of Bacteriology, 192(12): 3011-3023. DOI: https://doi.org/10.1128/JB.01571-09

Othman, N.A. & Yahya, M.F.Z.R. 2019. In silico analysis of essential and non-homologous proteins in Salmonella typhimurium biofilm. Journal of Physics: Conference Series, 1349(1): 012133. DOI: https://doi.org/10.1088/1742-6596/1349/1/012133

Percival, S.L., Suleman, L., Vuotto, C. & Donelli, G. 2015. Healthcare-associated infections, medical devices and biofilms: Risk, tolerance and control. Journal of Medical Microbiology, 64: 323-334. DOI: https://doi.org/10.1099/jmm.0.000032

Petrova, O.E. & Sauer, K. 2012. Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA. Proceedings of the National Academy of Sciences, 109(41): 16690-16695. DOI: https://doi.org/10.1073/pnas.1207832109

Praneenararat, T., Takagi, T. & Iwasaki, W. 2012. Integration of interactive, multi-scale network navigation approach with Cytoscape for functional genomics in the big data era. BMC Genomics, 13: 1-10. DOI: https://doi.org/10.1186/1471-2164-13-S7-S24

Rashid, S.A.A., Yaacob, M.F., Aazmi, M.S., Jesse, F.F.A. & Yahya, M.F.Z.R. 2022. Inhibition of Corynebacterium pseudotuberculosis biofilm by DNA and protein synthesis inhibitors. Journal of Sustainability Science and Management, 17(4): 49-56. DOI: https://doi.org/10.46754/jssm.2022.4.004

Saddiqi, M. & Kadir, A.A. 2024. Antibacterial activity of free and liposome-encapsulated Tylosin against planktonic and biofilm forms of Corynebacterium pseudotuberculosis isolated from goats. Acta Veterinaria Eurasia, 50(2).

Santos, E.M.S., Almeida, A.C., Santos, H.O., Cangussu, A.S.R., Almeida, D.A. & Costa, K.S. 2018. Leader gene of Corynebacterium pseudotuberculosis may be useful in vaccines against caseous lymphadenitis of goats: A bioinformatics approach. Journal of Veterinary Medical Science, 80(8): 1317-1324. DOI: https://doi.org/10.1292/jvms.16-0581

Santos, L.M., Rodrigues, D.M., Alves, B.V.B., Kalil, M.A., Azevedo, V., Barh, D. & Portela, R.W. 2024. Activity of biogenic silver nanoparticles in planktonic and biofilm-associated Corynebacterium pseudotuberculosis. PeerJ, 12: e16751. DOI: https://doi.org/10.7717/peerj.16751

Schirmer, E.C., Florens, L., Guan, T., Yates, J.R. & Gerace, L. 2003. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science, 301(5638): 1380-1382. DOI: https://doi.org/10.1126/science.1088176

Schütze, K., Heinzinger, M., Steinegger, M. & Rost, B. 2022. Nearest neighbor search on embeddings rapidly identifies distant protein relations. Frontiers in Bioinformatics, 2: 1033775. DOI: https://doi.org/10.3389/fbinf.2022.1033775

Soares, S.C., Trost, E., Ramos, R.T.J., Carneiro, A.R., Santos, A.R., Pinto, A.C., Barbosa, E., Aburjaile, F., Ali, A., Diniz, C.A.A., Hassan, S.S., Fiaux, K., Guimarães, L.C., Bakhtiar, S.M., Pereira, U., Almeida, S.S., Abreu, V.A.C., Rocha, F.S., Dorella, F.A., Miyoshi, A., Silva, A., Azevedo, V. & Tauch, A. 2013. Genome sequence of Corynebacterium pseudotuberculosis biovar equi strain 258 and prediction of antigenic targets to improve biotechnological vaccine production. Journal of Biotechnology, 167(2): 135-141. DOI: https://doi.org/10.1016/j.jbiotec.2012.11.003

Stoodley, P., Sauer, K., Davies, D.G. & Costerton, J.W. 2002. Biofilms as complex differentiated communities. Annual Review of Microbiology, 56: 187-209. DOI: https://doi.org/10.1146/annurev.micro.56.012302.160705

Sung, K., Park, M., Chon, J., Kweon, O., Paredes, A. & Khan, S.A. 2024. Chicken juice enhances C. jejuni NCTC 11168 biofilm formation with distinct morphological features and altered protein expression. Foods, 13(12): 1828. DOI: https://doi.org/10.3390/foods13121828

Sung, K., Park, M., Kweon, O., Paredes, A., Savenka, A. & Khan, S.A. 2025. Proteomic insights into dual-species biofilm formation of E. coli and E. faecalis on urinary catheters. Scientific Reports, 15(1): 3739. DOI: https://doi.org/10.1038/s41598-024-81953-3

Suryaletha, K., Narendrakumar, L., John, J., Radhakrishnan, M.P., George, S. & Thomas, S. 2019. Decoding the proteomic changes involved in the biofilm formation of Enterococcus faecalis SK460 to elucidate potential biofilm determinants. BMC Microbiology, 19: 146. DOI: https://doi.org/10.1186/s12866-019-1527-2

Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N.T., Roth, A., Bork, P., Jensen, L.J. & von Mering, C. 2017. The STRING database in 2017: Quality-controlled protein-protein interaction networks, made broadly accessible. Nucleic Acids Research, 45(D1): D362-D368. DOI: https://doi.org/10.1093/nar/gkw937

Yaacob, M.F., Johari, N.A., Kamaruzzaman, A.N.A. & Yahya, M.F.Z.R. 2021b. Mass spectrometry-based proteomic investigation of heterogeneous biofilms: A review. Scientific Research Journal, 18(2): 67-87. DOI: https://doi.org/10.24191/srj.v18i2.11718

Yaacob, M.F., Murata, A., Nor, N.H.M., Jesse, F.F.A. & Yahya, M.F.Z.R. 2021a. Biochemical composition, morphology and antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. Journal of King Saud University - Science, 33(1): 101225. DOI: https://doi.org/10.1016/j.jksus.2020.10.022

Yahya, M.F.Z.R., Alias, Z. & Karsani, S.A. 2017. Subtractive protein profiling of Salmonella typhimurium biofilm treated with DMSO. The Protein Journal, 36: 286-298. DOI: https://doi.org/10.1007/s10930-017-9719-9

Zawawi, W.M.A.W.M., Ibrahim, M.S.A., Rahmad, N., Hamid, U.M.A. & Yahya, M.F.Z.R. 2020. Proteomic analysis of Pseudomonas aeruginosa biofilm treated with Chromolaena odorata extracts. Malaysian Journal of Microbiology, 16(2): 124-133. DOI: https://doi.org/10.21161/mjm.190512

Published

30-09-2025

How to Cite

Syaida, A. A. R., Jesse, F. F. A., Aazmi, M. S., Yusof, M. I. M., Norfatimah Mohamed Yunus, & Yahya, M. F. Z. R. (2025). Differentially Expressed Proteins in Corynebacterium pseudotuberculosis During Biofilm Formation. Malaysian Applied Biology, 54(3), 15–26. https://doi.org/10.55230/mabjournal.v54i3.3010

Issue

Section

Research Articles

Most read articles by the same author(s)