Mir-Let-7i-5p As A Novel Regulator of MYC Gene Expression in Acute Myeloid Leukaemia

https://doi.org/10.55230/mabjournal.v54i4.3590

Authors

  • Ezalia Esa Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
  • Wan Muhammad Farhan Syafiq Wan Mohd Nor Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
  • Elsa Haniffah Mejia Mohamed Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
  • Wei-Yue Lim Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
  • Zubaidah Zakaria Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
  • Yuslina Mat Yusoff Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
  • Ivyna Pau Ni Bong Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
  • Yuh-Fen Pung Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
  • Noor Atiqah Fakharuzi Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
  • Shamsul Mohd Zain Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia

Keywords:

Cancer, Molecular, cell culture, biology, leukaemia

Abstract

Acute myeloid leukaemia (AML) is a severe bone marrow malignancy with a high mortality rate. Recent advancements in high-throughput technology and bioinformatics have facilitated the identification of microRNAs (miRNAs) involved in the pathogenesis of AML. This study aimed to investigate the potential role of MicroRNA-let-7i-5p (miR-let-7i-5p) in the progression of AML. MiR-let-7 family has been widely utilised as a tumour inhibitor, suppressing its expression in several types of human cancer. Hence, dysregulation of miR-let-7i-5p is critical to cancer progression. However, the role of miR-let-7i-5p in AML remains unclear. Using the Gene Expression Omnibus (GEO) database, the expression of miR-let-7i-5p in AML patients was investigated. The role of miR-let-7i-5p and its potential target genes in AML was examined using bioinformatic tools. Subsequently, the effect of miR-let-7i-5p was assessed through transfection, followed by the analysis of target gene expression using RT-qPCR. Further investigations employed the MTT and cell cycle assays on the effects of miR-let-7i-5p on AML cell proliferation and cell cycle. According to the GEO database, miR-let-7i-5p was significantly downregulated in AML patients compared to controls. AML development has been associated with miR-let-7i-5p by KEGG pathway analysis. Bioinformatics suggested that miR-let-7i-5p targets MYC in AML cells. Transfection of miR-let-7i-5p into AML cell lines decreased MYC expression, suggesting MYC regulates AML progression. However, MTT and cell cycle assays showed no significant effect of miR-let-7i-5p on AML cell proliferation and cell cycle, indicating the potential involvement of miR-let-7i-5p in alternative pathways in AML pathogenesis. The study highlights the potential significance of miR-let-7i-5p in regulating AML progression.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ahmadi, S.E., Rahimi, S., Zarandi, B., Chegeni, R. & Safa, M. 2021. MYC: A multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. Journal of Hematology & Oncology, 14(1): 1–49. DOI: https://doi.org/10.1186/s13045-021-01111-4

Arai, Y., Chi, S.G., Minami, Y. & Yanada, M. 2022. FLT3-targeted treatment for acute myeloid leukemia. International Journal of Hematology, 116(3): 351–363. DOI: https://doi.org/10.1007/s12185-022-03374-0

Barh, D., Malhotra, R., Ravi, B. & Sindhurani, P. 2010. MicroRNA Let-7: An emerging next-generation cancer therapeutic. Current Oncology, 17(1): 70–80. DOI: https://doi.org/10.3747/co.v17i1.356

Bennett, J.M., Catovsky, D., Daniel, M.-T., Flandrin, G., Galton, D.A.G., Gralnick, H.R. & Sultan, C. 1976. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. British Journal of Haematology, 33(4): 451–458. DOI: https://doi.org/10.1111/j.1365-2141.1976.tb03563.x

Chen, P., Price, C., Li, Z., Li, Y., Cao, D., Wiley, A., He, C., Gurbuxani, S., Kunjamma, R.B., Huang, H., Jiang, X., Arnovitz, S., Xu, M., Hong, G.M., Elkahloun, A.G., Neilly, M.B., Wunderlich, M., Larson, R.A., Le Beau, M.M., Mulloy, J.C., Liu, P.P., Rowley, J.D. & Chen, J. 2013. miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia-rearranged leukemia. Proceedings of the National Academy of Sciences of the United States of America, 110(28): 11511–11516. DOI: https://doi.org/10.1073/pnas.1310144110

Dunlap, J., Beadling, C., Warrick, A., Neff, T., Fleming, W.H., Loriaux, M., Heinrich, M.C., Kovacsovics, T., Kelemen, K., Leeborg, N., Gatter, K., Braziel, R.M., Press, R., Corless, C.L. & Fan, G. 2012. Multiplex high-throughput gene mutation analysis in acute myeloid leukemia. Human Pathology, 43(12): 2167–2176. DOI: https://doi.org/10.1016/j.humpath.2012.03.002

Esa, E., Hashim, A.K., Mohamed, E.H.M., Zakaria, Z., Abu Hassan, A.N., Mat Yusoff, Y., Kamaluddin, N.R., Abdul Rahman, A.Z., Chang, K.M., Mohamed, R., Subbiah, I., Jamian, E., Ho, C.S.L., Lim, S.M., Lau, P.C., Pung, Y.F. & Zain, S.M. 2021. Construction of a microRNA-mRNA regulatory network in de novo cytogenetically normal acute myeloid leukemia patients. Genetic Testing and Molecular Biomarkers, 25(3): 199–210. DOI: https://doi.org/10.1089/gtmb.2020.0182

Hwang, S.M. 2020. Classification of acute myeloid leukemia. Blood Research, 55(Suppl): S1–S1. DOI: https://doi.org/10.5045/br.2020.S001

Kantarjian, H., Kadia, T., DiNardo, C., Daver, N., Borthakur, G., Jabbour, E., Garcia-Manero, G., Konopleva, M. & Ravandi, F. 2021. Acute myeloid leukemia: Current progress and future directions. Blood Cancer Journal, 11(2): 41. DOI: https://doi.org/10.1038/s41408-021-00425-3

Khoury, J.D., Solary, E., Abla, O., Akkari, Y., Alaggio, R., Apperley, J.F., Bejar, R., Berti, E., Busque, L., Chan, J.K.C., Chen, W., Chen, X., Chng, W.J., Choi, J.K., Colmenero, I., Coupland, S.E., Cross, N.C.P., De Jong, D., Elghetany, M.T., Takahashi, E., Emile, J.F., Ferry, J., Fogelstrand, L., Fontenay, M., Germing, U., Gujral, S., Haferlach, T., Harrison, C., Hodge, J.C., Hu, S., Jansen, J.H., Kanagal-Shamanna, R., Kantarjian, H.M., Kratz, C.P., Li, X.Q., Lim, M.S., Loeb, K., Loghavi, S., Marcogliese, A., Meshinchi, S., Michaels, P., Naresh, K.N., Natkunam, Y., Nejati, R., Ott, G., Padron, E., Patel, K.P., Patkar, N., Picarsic, J., Platzbecker, U., Roberts, I., Schuh, A., Sewell, W., Siebert, R., Tembhare, P., Tyner, J., Verstovsek, S., Wang, W., Wood, B., Xiao, W., Yeung, C. & Hochhaus, A. 2022. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia, 36(7): 1703–1719. DOI: https://doi.org/10.1038/s41375-022-01613-1

Kuete, V., Karaosmanoğlu, O. & Sivas, H. 2017. Anticancer activities of African medicinal spices and vegetables. In: Medicinal Spices and Vegetables from Africa: Therapeutic Potential Against Metabolic, Inflammatory, Infectious and Systemic Diseases. V. Kuete (Ed.). Academic Press, London. pp. 271–297. DOI: https://doi.org/10.1016/B978-0-12-809286-6.00010-8

Liu, Y., Hu, X., Hu, L., Xu, C. & Liang, X. 2021. Let-7i-5p enhances cell proliferation, migration and invasion of ccRCC by targeting HABP4. BMC Urology, 21(1): 1–11. DOI: https://doi.org/10.1186/s12894-021-00820-9

Lu, Y., Zhong, L., Luo, X., Liu, C., Dan, W., Chu, X., Wan, P., Zhang, Z., Wang, X., Liu, Z. & Liu, B. 2022. MiRNA-301b-3p induces proliferation and inhibits apoptosis in AML cells by targeting FOXF2 and regulating Wnt/β-catenin axis. Molecular and Cellular Probes, 63: 101805. DOI: https://doi.org/10.1016/j.mcp.2022.101805

MacFarlane, L.A. & Murphy, P.R. 2010. MicroRNA: Biogenesis, function and role in cancer. Current Genomics, 11(7): 537-554. DOI: https://doi.org/10.2174/138920210793175895

Nepstad, I., Hatfield, K.J., Grønningsæter, I.S. & Reikvam, H. 2020. The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells. International Journal of Molecular Sciences, 21(8): 2907. DOI: https://doi.org/10.3390/ijms21082907

Qin, M.M., Chai, X., Huang, H.B., Feng, G., Li, X.N., Zhang, J., Zheng, R., Liu, X.C. & Pu, C. 2019. let-7i inhibits proliferation and migration of bladder cancer cells by targeting HMGA1. BMC Urology, 19(1): 70. DOI: https://doi.org/10.1186/s12894-019-0485-1

Song, J., Wang, L., Ma, Q., Yang, Y., Yang, Z., Wang, B. & He, N. 2018. Let-7i-5p inhibits the proliferation and metastasis of colon cancer cells by targeting kallikrein-related peptidase 6. Oncology Reports, 40(3): 1459–1466. DOI: https://doi.org/10.3892/or.2018.6577

Sun, X., Xue, H., Xiong, Y., Yu, R., Gao, X., Qian, M., Wang, S., Wang, H., Xu, J., Chen, Z., Deng, L. & Li, G. 2019. GALE promotes the proliferation and migration of glioblastoma cells and is regulated by miR-let-7i-5p. Cancer Management and Research, 11: 10539–10554. DOI: https://doi.org/10.2147/CMAR.S221585

Surveillance, Epidemiology, and End Results Program. 2023. Surveillance, Epidemiology, and End Results Program [WWW Document]. URL https://seer.cancer.gov/ (accessed 12.26.24).

Thol, F. & Heuser, M. 2021. Treatment for relapsed/refractory acute myeloid leukemia. HemaSphere, 5(6): E572. DOI: https://doi.org/10.1097/HS9.0000000000000572

Trino, S., Lamorte, D., Caivano, A., Laurenzana, I., Tagliaferri, D., Falco, G., Vecchio, L.Del, Musto, P. & De Luca, L. 2018. MicroRNAs as new biomarkers for diagnosis and prognosis, and as potential therapeutic targets in acute myeloid leukemia. International Journal of Molecular Sciences, 19(2): 460. DOI: https://doi.org/10.3390/ijms19020460

Yu, Z., Liu, Y., Li, Y., Zhang, J., Peng, J., Gong, J., Xia, Y. & Wang, L. 2022. miRNA-338-3p inhibits glioma cell proliferation and progression by targeting MYT1L. Brain Research Bulletin, 179: 1–12. DOI: https://doi.org/10.1016/j.brainresbull.2021.11.016

Zhang, N., Hu, G., Myers, T.G. & Williamson, P.R. 2019. Protocols for the analysis of microRNA expression, biogenesis and function in immune cells. Current Protocols in Immunology, 126(1): e78. DOI: https://doi.org/10.1002/cpim.78

Published

28-12-2025

How to Cite

Esa, E. ., Wan Mohd Nor, W. M. F. S. ., Mejia Mohamed, E. H. ., Lim, W.-Y., Zakaria, Z. ., Mat Yusoff, Y. ., Bong, I. P. N., Pung, Y.-F., Fakharuzi, N. A. ., & Zain, S. M. (2025). Mir-Let-7i-5p As A Novel Regulator of MYC Gene Expression in Acute Myeloid Leukaemia. Malaysian Applied Biology, 54(4), 146–153. https://doi.org/10.55230/mabjournal.v54i4.3590

Issue

Section

Research Articles

Most read articles by the same author(s)