Regulation of OsSAP8 Promoter in Response to Abiotic Stresses

https://doi.org/10.55230/mabjournal.v54i3.3210

Authors

  • Sitti ‘Aisyah Mohd Roszelin Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia
  • Khairun Nisha Japlus Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia
  • Hoe-Han Goh Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia
  • Nurulhikma Md Isa Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia

Keywords:

Abiotic stress, β-glucuronidase (GUS), Cis-regulatory elements, Phytohormone, Promoter, Stress-associated Protein 8

Abstract

Abiotic stresses such as drought, salinity and extreme temperatures pose significant challenges to crop production, particularly impacting rice yield and quality. These stresses are exacerbated by climate change and the escalation of the human population. Plant adaptation to abiotic stresses involves intricate molecular mechanisms, including gene expression alterations, metabolic adjustments, and stress-responsive gene activation. Phytohormones play pivotal roles in regulating these adaptive responses, by playing a central role in regulating plant growth and enhancing resilience to stress. Previous studies have shown that Oryza sativa Stress-associated protein 8 (OsSAP8) enhanced plant tolerance to drought and salinity stresses throughout the growth and developmental stages. In this study, we focused on the OsSAP8 promoter, especially the phytohormone-responsive Cis-Regulatory Elements (CREs), to deepen our understanding of its regulation under abiotic stress conditions. Promoter analysis identified several CREs associated with Abscisic Acid (ABA), Gibberellic Acid (GA) and Methyl-Jasmonate (MeJA) phytohormones. Subsequently, promoter deletion was performed using two different lengths of OsSAP8 promoter fragments, comprising different sets of phytohormone CREs. Promoter-β-glucuronidase (GUS) fusion constructs in transgenic Arabidopsis plants revealed that the truncated promoter fragment of pOsSAP8(934pb)::GUS exhibited stronger GUS activity compared to the full-length promoter, pOsSAP8(1801pb)::GUS under drought and salinity stresses. This suggests that the CREs responsible for OsSAP8 expression under stress conditions are located within this shorter promoter region. These findings underscore the importance of OsSAP8 in plant stress responses and provide a foundation for future research on enhancing agricultural sustainability amid changing environmental conditions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Asad, M.A.U., Zakari, S.A., Zhao, Q., Zhou, L., Ye, Y. & Cheng, F. 2019. Abiotic stresses intervene with ABA signaling to induce destructive metabolic pathways leading to death : Premature leaf senescence in plants. International Journal of Molecular Sciences, 20(2): 256. DOI: https://doi.org/10.3390/ijms20020256

Bao, A., Jiao, T., Hu, T., Cui, K., Yue, W., Liu, Y., Zeng, H., Zhang, J., Han, S. & Wu, M. 2024. Cloning of the Arabidopsis SMAP2 promoter and analysis of its expression activity. Scientific Reports, 14(1): 1-12. DOI: https://doi.org/10.1038/s41598-024-61525-1

Bellenot, C., Routaboul, J.M., Laufs, P. & Noël, L.D. 2022. Hydathodes. Current Biology, 32(14): 763-764. DOI: https://doi.org/10.1016/j.cub.2022.06.014

Bhoi, A., Yadu, B., Chandra, J. & Keshavkant, S. 2022. Mutagenesis: A coherent technique to develop biotic stress resistant plants. Plant Stress, 3(2022): 100053. DOI: https://doi.org/10.1016/j.stress.2021.100053

Biłas, R., Szafran, K., Hnatuszko-Konka, K. & Kononowicz, A.K. 2016. Cis-regulatory elements used to control gene expression in plants. The Plant Cell, Tissue and Organ Culture, 127(2): 269-287. DOI: https://doi.org/10.1007/s11240-016-1057-7

Bolser, D.M., Staines, D.M., Perry, E. & Kersey, P.J. 2017. Ensembl Plants: Integrating tools for visualizing, mining, and analyzing plant genomic data. Methods in Molecular Biology. A. Dijk (Ed). Humana Press: New York. pp 337. DOI: https://doi.org/10.1007/978-1-4939-6658-5_1

Boon Teck, T., Pei Shan, F., Radin Firdaus, R.B., Mou Leong, T. & Mahinda Senevi, G. 2021. Impact of climate change on rice yield in malaysia: A panel data analysis. Agriculture, 11(6): 569. DOI: https://doi.org/10.3390/agriculture11060569

Bouchez, D., Tokuhisa, J.G., Llewellyn, D.J., Dennis, E.S. & Ellis, J.G. 1989. The ocs-element is a component of the promoters of several T-DNA and plant viral genes. The EMBO Journal, 8(13): 4197-4204. DOI: https://doi.org/10.1002/j.1460-2075.1989.tb08605.x

Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R. & Görlach, J. 2001. Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. The Plant Cell, 13(7): 1499-1510. DOI: https://doi.org/10.1105/TPC.010011

Brookbank, B.P., Patel, J., Gazzarrini, S. & Nambara, E. 2021. Role of basal ABA in plant growth and development. Genes, 12(12): 1936. DOI: https://doi.org/10.3390/genes12121936

Cerutti, A., Jauneau, A., Auriac, M.C., Lauber, E., Martinez, Y., Chiarenza, S., Leonhardt, N., Berthomé, R. & Noël, L.D. 2017. Immunity at cauliflower hydathodes controls systemic infection by Xanthomonas campestris pv campestris. Plant Physiology, 174(2): 700-716. DOI: https://doi.org/10.1104/pp.16.01852

Chao, J., Huang, Z., Yang, S., Deng, X. & Tian, W. 2020. Genome-wide identification and expression analysis of the phosphatase 2A family in rubber tree (Hevea brasiliensis). PLoS One, 15(2): e0228219. DOI: https://doi.org/10.1371/journal.pone.0228219

Chen, C., Chen, J., Wu, G., Li, L., Hu, Z. & Li, X. 2023. A blue light-responsive Strong synthetic promoter based on rational design in Chlamydomonas reinhardtii. International Journal of Molecular Sciences, 24(19): 14596. DOI: https://doi.org/10.3390/ijms241914596

Clough, S.J. & Bent, A.F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16(6): 735-743. DOI: https://doi.org/10.1046/j.1365-313x.1998.00343.x

Cohen, S.P. & Leach, J.E. 2019. Abiotic and biotic stresses induce a core transcriptome response in rice. Scientific Reports, 9(1): 6273. DOI: https://doi.org/10.1038/s41598-019-42731-8

Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R. & Abrams, S.R. 2010. Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 61:651-679. DOI: https://doi.org/10.1146/annurev-arplant-042809-112122

Danquah, A., Zelicourt, A. De, Colcombet, J. & Hirt, H. 2014. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances, 32(1): 40-52. DOI: https://doi.org/10.1016/j.biotechadv.2013.09.006

Davies, P.J. 2010. The Plant Hormones: Their nature, occurrence, and functions. In: Plant Hormones. P.J. Davies (Ed.). 3rd Eds. Springer, Dordrecht. pp. 1-15. DOI: https://doi.org/10.1007/978-1-4020-2686-7_1

Davis, A.M., Hall, A., Millar, A.J., Darrah, C. & Davis, S.J. 2009. Protocol: Streamlined sub-protocols for floral-dip transformation and selection of transformants in Arabidopsis thaliana. Plant Methods, 5(3): 1-7. DOI: https://doi.org/10.1186/1746-4811-5-3

FAO. 2022. Background to the global symposium on salt-affected soils. In: Global Symposium on Salt-Affected Soils: Outcome document. Rome. pp. 3-4.

Figueroa-Balderas, R.E., García-Ponce, B. & Rocha-Sosa, M. 2006. Hormonal and stress induction of the gene encoding common bean acetyl-coenzyme a carboxylase. Plant Physiology, 142(2): 609-619. DOI: https://doi.org/10.1104/pp.106.085597

Giri, J., Vij, S., Dansana, P.K. & Tyagi, A.K. 2011. Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1⁄11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytologist, 191: 721-732. DOI: https://doi.org/10.1111/j.1469-8137.2011.03740.x

Gopalakrishnan, T. & Kumar, L. 2021. Linking long-term changes in soil salinity to paddy land abandonment in Jaffna Peninsula, Sri Lanka. Agriculture, 11(3): 211. DOI: https://doi.org/10.3390/agriculture11030211

Hailu, B. & Mehari, H. 2021. Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: A review. Journal of Natural Sciences Research, 12(3): 1-10.

Hazbir, N.A.M., Japlus, K.N., Mohammad-Sidik, A., Lam, S.D. & Md Isa, N. 2024. The Oryza sativa Stress Associated Protein (OsSAP) promoter modulates gene expression in response to abiotic stress by utilizing cis regulatory elements within the promoter region. Malaysian Applied Biology, 53(4):89-102. DOI: https://doi.org/10.55230/mabjournal.v53i4.3099

Heidari, P., Ahmadizadeh, M. & Najafi-zarrini, H. 2015. In silico analysis of cis-regulatory elements on co-expressed genes. Journal of Biological and Environmental Sciences, 9(25): 1-9.

Hernandez-Garcia, C.M. & Finer, J.J. 2014. Identification and validation of promoters and cis-acting regulatory elements. Plant Science, 217-218: 109-119. DOI: https://doi.org/10.1016/j.plantsci.2013.12.007

Higo, K., Ugawa, Y., Iwamoto, M. & Korenaga, T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Research, 27(1): 297-300. DOI: https://doi.org/10.1093/nar/27.1.297

Hou, J., Jiang, P., Qi, S., Zhang, K., He, Q., Xu, C., Ding, Z., Zhang, K. & Li, K. 2016. Isolation and functional validation of salinity and osmotic stress inducible promoter from the maize type-II H+-pyrophosphatase gene by deletion analysis in transgenic tobacco plants. PLoS One, 11(4): 1-23. DOI: https://doi.org/10.1371/journal.pone.0154041

Huang, H., Liu, B., Liu, L. & Song, S. 2017. Jasmonate action in plant growth and development. Journal of Experimental Botany, 68(6): 1349-1359. DOI: https://doi.org/10.1093/jxb/erw495

Iqbal, J., Zia-ul-Qamar, Yousaf, U., Asgher, A., Dilshad, R., Qamar, F.M., Bibi, S., Rehman, S.U. & Haroon, M. 2023. Sustainable rice production under biotic and abiotic stress challenges. In: Sustainable Agriculture in The Era of the OMICs Revolution. A. Qayyum, S. Channa, F.S. Prakash, Baloch, M.A. Nadeem, M.A. and S. Fiaz (Eds.). Springer, Cham. pp. 241-268. DOI: https://doi.org/10.1007/978-3-031-15568-0_11

Ishibashi, Y., Takanashi, H. & Yoshida, K.T. 2016. Functional analysis of the promoter of a rice 18 kDa oleosin gene. Plant Biotechnology, 33(3): 195-200. DOI: https://doi.org/10.5511/plantbiotechnology.16.0908a

Jafar, J., Hassan, H., Shabala, S. & Ouyang, B. 2022. Signaling molecules and transcriptional reprogramming for stomata operation under salt stress. In: Stomata Regulation and Water Use Efficiency in Plants under Saline Soil Conditions. S. Shabala (Ed.). Academic Press, London. pp. 163-193. DOI: https://doi.org/10.1016/bs.abr.2022.02.013

Jefferson, R.A., Kavanagh, T.A. & Bevan, M.W. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13): 3901-3907. DOI: https://doi.org/10.1002/j.1460-2075.1987.tb02730.x

Kanneganti, V. & Gupta, A.K. 2008. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Molecular Biology, 66(5): 445-462. DOI: https://doi.org/10.1007/s11103-007-9284-2

Kaur, A., Pati, P.K., Pati, A.M. & Nagpal, A.K. 2017. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PLoS One 12(9): e0184523. DOI: https://doi.org/10.1371/journal.pone.0184523

Kawamura, E., Horiguchi, G. & Tsukaya, H. 2010. Mechanisms of leaf tooth formation in Arabidopsis. Plant Journal, 62(3): 429-441. DOI: https://doi.org/10.1111/j.1365-313X.2010.04156.x

Kim, J.S., Mizoi, J., Yoshida, T., Fujita, Y., Nakajima, J., Ohori, T., Todaka, D., Nakashima, K., Hirayama, T., Shinozaki, K. & Yamaguchi-Shinozaki, K. 2011. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant and Cell Physiology, 52(12): 2136-2146. DOI: https://doi.org/10.1093/pcp/pcr143

Knudsen, S. 1999. Promoter 2.0: For the recognition of PolII promoter sequences. Bioinformatics, 15(5): 356-361. DOI: https://doi.org/10.1093/bioinformatics/15.5.356

Kong, W., Ding, L., Cheng, J. & Wang, B. 2018. Identification and expression analysis of genes with pathogen-inducible cis-regulatory elements in the promoter regions in Oryza sativa. Rice, 11(1): 52. DOI: https://doi.org/10.1186/s12284-018-0243-0

Krämer, U. 2015. Planting molecular functions in an ecological context with Arabidopsis thaliana. eLife, 4: e06100. DOI: https://doi.org/10.7554/eLife.06100

Lai, G., Song, S., Liu, Y., Fu, P., Xiang, J. & Lu, J. 2019. RPW8 promoter is involved in pathogen and stress-inducible expression from Vitis pseudoreticulata. Journal of Phytopathology, 167(2): 65-74. DOI: https://doi.org/10.1111/jph.12768

Lam, E., Benfey, P.N., Gilmartin, P.M., Fang, R.-X. & Chua, N.-H. 1989. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. In: Proceedings of the National Academy of Sciences of the United States of America, 86(20): 7890-7894. DOI: https://doi.org/10.1073/pnas.86.20.7890

Lenka, S. & Bansal, K. 2019. Abiotic stress responsive cis-regulatory elements (CREs) in rice (Oryza sativa L.) and other plants. OSF Preprints. DOI: https://doi.org/10.31219/osf.io/n98t5

Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van De Peer, Y., Rouzé, P. & Rombauts, S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1): 325-327. DOI: https://doi.org/10.1093/nar/30.1.325

Li, M., Zhang, H., He, D., Damaris, R.N. & Yang, P. 2022. A stress-associated protein OsSAP8 modulates gibberellic acid biosynthesis by reducing the promotive effect of transcription factor OsbZIP58 on OsKO2. Journal of Experimental Botany, 73(8): 2420-2433. DOI: https://doi.org/10.1093/jxb/erac027

Liu, S., Liu, C., Wang, X. & Chen, H. 2020. Seed ‑ specific activity of the Arabidopsis β ‑ glucosidase 19 promoter in transgenic Arabidopsis and tobacco. Plant Cell Reports, 40: 213-221. DOI: https://doi.org/10.1007/s00299-020-02627-8

Liu, X. & Hou, X. 2018. Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Frontiers in Plant Science, 9: 251. DOI: https://doi.org/10.3389/fpls.2018.00251

Ma, B., Yuan, Y., Gao, M., Xing, L., Li, C., Li, M. & Ma, F. 2018. Genome-wide identification, classification, molecular evolution and expression analysis of malate dehydrogenases in apple. International Journal of Molecular Sciences, 19(11): 3312. DOI: https://doi.org/10.3390/ijms19113312

Magwanga, R.O., Lu, P., Kirungu, J.N., Lu, H., Wang, X., Cai, X., Zhou, Z., Zhang, Z., Salih, H., Wang, K. & Liu, F. 2018. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genetics, 19(1): 6. DOI: https://doi.org/10.1186/s12863-017-0596-1

Maqsood, H., Munir, F., Amir, R. & Gul, A. 2022. Genome-wide identification, comprehensive characterization of transcription factors, cis-regulatory elements, protein homology, and protein interaction network of DREB gene family in Solanum lycopersicum. Frontiers in Plant Science 13: 1031679. DOI: https://doi.org/10.3389/fpls.2022.1031679

Marothia, D., Kaur, N. & Kumar Pati, P. 2021. Abiotic stress responses in plants: Current knowledge and future prospects. In: Abiotic Stress in Plants. S. Fahad, S. Saud, Y. Chen, C. Wu and D. Wang (Eds.). IntechOpen, London. pp. 73-91. DOI: https://doi.org/10.5772/intechopen.93824

Martin, R.C., Glover-Cutter, K., Baldwin, J.C. & Dombrowski, J.E. 2012. Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea. BMC Research Notes, 5(66). DOI: https://doi.org/10.1186/1756-0500-5-66

Misra, S. & Ganesan, M. 2021. The impact of inducible promoters in transgenic plant production and crop improvement. Plant Gene, 27: 100300. DOI: https://doi.org/10.1016/j.plgene.2021.100300

Mongkolsiriwatana, C., Pongtongkam, P. & Peyachoknagul, S. 2009. In silico promoter analysis of photoperiod-responsive genes identified by DNA microarray in rice (Oryza sativa L.). Kasetsart Journal - Natural Science, 43(1): 164-177.

Murray, A., Mendieta, J.P., Vollmers, C. & Schmitz, R.J. 2022. Simple and accurate transcriptional start site identification using Smar2C2 and examination of conserved promoter features. The Plant Journal, 112(2):583-596. DOI: https://doi.org/10.1111/tpj.15957

Peleg, Z. & Blumwald, E. 2011. Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 14(3): 290-295. DOI: https://doi.org/10.1016/j.pbi.2011.02.001

Quesada, V. 2022. Advances in the molecular mechanisms of abscisic acid and gibberellins functions in Plants 2.0. International Journal of Molecular Sciences, 23(15): 8524. DOI: https://doi.org/10.3390/ijms23158524

Ramkumar, G., Madhav, M.S., Rama Devi, S.J.S., Manimaran, P., Mohan, K.M., Prasad, M.S., Balachandran, S.M., Neeraja, C.N., Sundaram, R.M. & Viraktamath, B.C. 2014. Nucleotide diversity of Pita, a major blast resistance gene and identification of its minimal promoter. Gene, 546(2): 250-256. DOI: https://doi.org/10.1016/j.gene.2014.06.001

Rerksiri, W., Zhang, X., Xiong, H. & Chen, X. 2013. Expression and promoter analysis of six heat stress-inducible genes in rice. The Scientific World Journal, 2013: 397401. DOI: https://doi.org/10.1155/2013/397401

Rivero, L., Scholl, R., Holomuzki, N., Crist, D., Grotewold, E. & Brkljacic, J. 2014. Handling Arabidopsis plants: Growth, preservation of seeds, transformation, and genetic crosses. Methods in Molecular Biology, 1062: 3-25. DOI: https://doi.org/10.1007/978-1-62703-580-4_1

Roșca, M., Mihalache, G. & Stoleru, V. 2023. Tomato responses to salinity stress: From morphological traits to genetic changes. Frontiers in Plant Science, 14: 1118383. DOI: https://doi.org/10.3389/fpls.2023.1118383

Roslan, N.F., Rashid, N.S.A., Suka, I.E., Taufik, N.A.N.A., Abdullah, N.S., Asruri, M.B., Toni, B., Sukiran, N.L., Zainal, Z. & Isa, N.M. 2017. Enhanced tolerance to salinity stress and ABA is regulated by Oryza sativa STRESS ASSOCIATED PROTEIN 8 (OsSAP8). Australian Journal of Crop Science, 11(7): 853-860. DOI: https://doi.org/10.21475/ajcs.17.11.07.pne505

Roszelin, S.A.M., Hazbir, N.A.M., Jumali, S.S., Shakri, T. & Isa, N.M. 2023. Characterization and functional study of stress-associated protein in rice and arabidopsis. Malaysian Applied Biology 52(3): 73-86. DOI: https://doi.org/10.55230/mabjournal.v52i3.2705

Saad, R. Ben, Zouari, N., Ben Ramdhan, W., Azaza, J., Meynard, D., Guiderdoni, E. & Hassairi, A. 2010. Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger "alSAP" gene isolated from the halophyte grass Aeluropus littoralis. Plant Molecular Biology, 72(1-2): 171-190. DOI: https://doi.org/10.1007/s11103-009-9560-4

Sabagh, A. EL, Islam, M.S., Hossain, A., Iqbal, M.A., Mubeen, M., Waleed, M., Reginato, M., Battaglia, M., Ahmed, S., Rehman, A., Arif, M., Athar, H.U.R., Ratnasekera, D., Danish, S., Raza, M.A., Rajendran, K., Mushtaq, M., Skalicky, M., Brestic, M., Soufan, W., Fahad, S., Pandey, S., Kamran, M., Datta, R. & Abdelhamid, M.T. 2022. Phytohormones as growth regulators during abiotic stress tolerance in plants. Frontiers in Agronomy, 4: 765068. DOI: https://doi.org/10.3389/fagro.2022.765068

Sahid, S., Roy, C., Paul, S. & Datta, R. 2020. Rice lectin protein Osr40c1 imparts drought tolerance by modulating OsSAM2, OsSAP8 and chromatin-associated proteins. Journal of Experimental Botany, 71(22): 7331-7346. DOI: https://doi.org/10.1093/jxb/eraa400

Santner, A. & Estelle, M. 2010. The ubiquitin-proteasome system regulates plant hormone signaling. Plant Journal, 61(6): 1029-1040. DOI: https://doi.org/10.1111/j.1365-313X.2010.04112.x

Schmitz, R.J., Grotewold, E. & Stam, M. 2022. Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. The Plant Cell, 34(2): 718-741. DOI: https://doi.org/10.1093/plcell/koab281

Shahmuradov, I.A., Umarov, R.K. & Solovyev, V. V. 2017. TSSPlant: A new tool for prediction of plant Pol II promoters. Nucleic Acids Research, 45(8). DOI: https://doi.org/10.1093/nar/gkw1353

Shaw, L. 2021. Arabidopsis growth on agar plates [WWW Document]. ARC COE for Plant Success in Nature and Agriculture.

Shokri-Gharelo, R., Bandehagh, A., Mahmoudi, B. & Moti-Noparvar, P. 2017. In silico study of cis-acting elements revealing the plastid gene involved in oxidative phosphorylation are responsive to abiotic stresses. Acta biologica Szegediensis, 61(2): 179-188.

Shu, K., Chen, Q., Wu, Y., Liu, R., Zhang, H., Wang, S., Tang, S., Yang, W. & Xie, Q. 2016. Abscisic acid-insensitive 4 negatively regulates flowering through directly promoting Arabidopsis Flowering Locus C transcription. Journal of Experimental Botany, 67(1): 195-205. DOI: https://doi.org/10.1093/jxb/erv459

Shu, K., Zhou, W., Chen, F., Luo, X. & Yang, W. 2018. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Frontiers in Plant Science, 9: 416. DOI: https://doi.org/10.3389/fpls.2018.00416

Singh, A. & Roychoudhury, A. 2023. Abscisic acid in plants under abiotic stress : Crosstalk with major phytohormones. Plant Cell Reports, 42(6): 961-974. DOI: https://doi.org/10.1007/s00299-023-03013-w

Singh, D. & Laxmi, A. 2015. Transcriptional regulation of drought response: A tortuous network of transcriptional factors. Frontiers in Plant Science, 6:895. DOI: https://doi.org/10.3389/fpls.2015.00895

Srivastava, V.K., Raikwar, S. & Tuteja, N. 2014. Cloning and functional characterization of the promoter of PsSEOF1 gene from Pisum sativum under different stress conditions using Agrobacterium-mediated transient assay. Plant Signaling and Behavior, 9(9): e29626. DOI: https://doi.org/10.4161/psb.29626

Su, D., Xiang, W., Wen, L., Lu, W., Shi, Y., Liu, Y. & Li, Z. 2021. Genome-wide identification, characterization and expression analysis of BES1 gene family in tomato. BMC Plant Biology, 21(1): 161. DOI: https://doi.org/10.1186/s12870-021-02933-7

Tao, Y., Wang, F., Jia, D., Li, J., Zhang, Y., Jia, C., Wang, D. & Pan, H. 2015. Cloning and functional analysis of the promoter of a stress-inducible gene (ZmRXO1) in maize. Plant Molecular Biology Reporter, 33(2): 200-208. DOI: https://doi.org/10.1007/s11105-014-0741-1

Tuteja, N. & Sopory, S.K. 2008. Chemical signaling under abiotic stress environment in plants. Plant Signaling and Behavior, 3(8): 525-536. DOI: https://doi.org/10.4161/psb.3.8.6186

Tuteja, N. 2007. Abscisic acid and abiotic stress signaling. Plant Signaling and Behavior, 2(3): 135-138. DOI: https://doi.org/10.4161/psb.2.3.4156

United Nations. 2022. World population reaches 8 billion on 15 November 2022 [WWW Document]. United Nations: Department of Economic and Social Affairs.

Venegas-Molina, J., Proietti, S., Pollier, J., Orozco-Freire, W., Ramirez-Villacis, D. & Leon-Reyes, A. 2020. Induced tolerance to abiotic and biotic stresses of broccoli and Arabidopsis after treatment with elicitor molecules. Scientific Reports, 10(1): 10319. DOI: https://doi.org/10.1038/s41598-020-67074-7

Verma, V., Ravindran, P. & Kumar, P.P. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16: 86. DOI: https://doi.org/10.1186/s12870-016-0771-y

Wahab, A., Abdi, G., Saleem, M.H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C.C. & Marc, R.A. 2022. Plants' physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants, 11(13):1620. DOI: https://doi.org/10.3390/plants11131620

Wang, P., Du, Y., Zhao, X., Miao, Y. & Song, C.P. 2013. The MPK6-ERF6-ROS-responsive cis-acting element7/GCC box complex modulates oxidative gene transcription and the oxidative response in arabidopsis. Plant Physiology, 161(3): 1392-1408. DOI: https://doi.org/10.1104/pp.112.210724

Wang, S., Lv, X., Zhang, J., Chen, D., Chen, S., Fan, G., Ma, C. & Wang, Y. 2022. Roles of E3 ubiquitin ligases in plant responses to abiotic stresses. International Journal of Molecular Sciences, 23(4): 2308. DOI: https://doi.org/10.3390/ijms23042308

Wang, Y., Liu, G.J., Yan, X.F., Wei, Z.G. & Xu, Z.R. 2011. MeJA-inducible expression of the heterologous JAZ2 promoter from Arabidopsis in Populus trichocarpa protoplasts. Journal of Plant Diseases and Protection, 118(2): 69-74. DOI: https://doi.org/10.1007/BF03356384

Wang, Y., Mostafa, S., Zeng, W. & Jin, B. 2021. Function and mechanism of Jasmonic acid in plant responses to abiotic and biotic Stresses. International Journal of Molecular Sciences, 22: 8568. DOI: https://doi.org/10.3390/ijms22168568

Wasternack, C. & Song, S. 2017. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany, 68(6): 1303-1321.

Weiss, D. & Ori, N. 2007. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiology, 144(3): 1240-1246. DOI: https://doi.org/10.1104/pp.107.100370

Yagi, H., Nagano, A.J., Kim, J., Tamura, K., Mochizuki, N., Nagatani, A., Matsushita, T. & Shimada, T. 2021a. Fluorescent protein-based imaging and tissue-specific RNA-seq analysis of Arabidopsis hydathodes. Journal of Experimental Botany, 72(4): 1260-1270. DOI: https://doi.org/10.1093/jxb/eraa519

Yagi, H., Tamura, K., Matsushita, T. & Shimada, T. 2021b. Spatiotemporal relationship between auxin dynamics and hydathode development in Arabidopsis leaf teeth. Plant Signaling and Behavior, 16(12): e1989216. DOI: https://doi.org/10.1080/15592324.2021.1989216

Yang, X., Jia, Z., Pu, Q., Tian, Y., Zhu, F. & Liu, Y. 2022. ABA mediates plant development and abiotic stress via alternative splicing. International Journal of Molecular Sciences, 23(7): 3796. DOI: https://doi.org/10.3390/ijms23073796

Zhang, H., Ma, F., Wang, X., Liu, S., Saeed, U.H., Hou, X., Zhang, Y., Luo, D., Meng, Y., Zhang, W., Abid, K. & Chen, R. 2020. Molecular and functional characterization of CaNAC035, an NAC transcription factor from pepper (Capsicum annuum L.). Frontiers in Plant Science, 11(14). DOI: https://doi.org/10.3389/fpls.2020.00014

Zhang, J., Schurr, U. & Davies, W.J. 1987. Control of stomatal behaviour by abscisic acid which apparently originates in the roots. Journal of Experimental Botany, 38(7): 1174-1181. DOI: https://doi.org/10.1093/jxb/38.7.1174

Zhang, K., Cui, H., Cao, S., Yan, L., Li, M. & Sun, Y. 2019. Overexpression of CrCOMT from Carex rigescens increases salt stress and modulates melatonin synthesis in Arabidopsis thaliana. Plant Cell Reports, 38(12): 1501-1514. DOI: https://doi.org/10.1007/s00299-019-02461-7

Zhang, X., Henriques, R., Lin, S.S., Niu, Q.W. & Chua, N.H. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 1(2): 641-646. DOI: https://doi.org/10.1038/nprot.2006.97

Zhang, Y., Lan, H., Shao, Q., Wang, R., Chen, H., Tang, H., Zhang, H. & Huang, J. 2016. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). Journal of Experimental Botany, 67(1): 315-326. DOI: https://doi.org/10.1093/jxb/erv464

Zhou, X.-T., Jia, L.-D., Duan, M.-Z., Chen, X., Qiao, C.-L., Ma, J.-Q., Zhang, C., Jing, F.-Y., Zhang, S.-S., Yang, B., Zhang, L.-Y. & Li, J.-N. 2020. Cis-acting elements in the promoter regions of BnCCDs. PLoS One. Dataset.

Zhu, J. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53: 247-73.

Published

30-09-2025

How to Cite

Roszelin, S. ‘Aisyah M., Japlus, K. N., Goh, H.-H., & Md Isa, N. . (2025). Regulation of OsSAP8 Promoter in Response to Abiotic Stresses. Malaysian Applied Biology, 54(3), 46–58. https://doi.org/10.55230/mabjournal.v54i3.3210

Issue

Section

Research Articles

Funding data