Phylogenetic Relationship of Diadema: Emphasis on The Two Distinct Clades of D. Setosum With The Inclusion of Long Spine Black Sea Urchin From Malaysian Borneo

https://doi.org/10.55230/mabjournal.v53i1.2786

Authors

  • Nursyuhaida Md Shahid Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak
  • Ruhana Hassan Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak

Keywords:

COI gene, D. setosum-a, D. setosum-b, Indo-West Pacific, monophyletic clades

Abstract

Diadema urchins (family Diadematidae) are ecologically important bioindicators of coral reef ecosystems and seagrass beds. Diadema urchins which are widely distributed and broadcast spawners, have been frequently utilized as model invertebrate species for zoogeography research of the Indo-West Pacific region. So far, Malaysian Borneo, located at the geographic center of Maritime Southeast Asia, has been under-sampled. This study aims to fill this sampling gap and provide the first record of Diadema setosum from Malaysian Borneo using genetic diagnostics to conclusively establish the clade-level identity of the species. According to Cytochrome Oxidase I gene analysis, Diadema is monophyletic. Seven species of Diadema namely Diadema palmeri, Diadema clarki, Diadema mexicanum, Diadema antillarum, Diadema paucispinum, Diadema africanum, and Diadema savignyi, formed their subclades with strong bootstrap values, demonstrating interspecific variation. The findings of this study provide further evidence for the presence of two distinct monophyletic clades, with all D. setosum individuals forming a monophyletic clade that later split into two distinct subclades, dividing Red Sea population (D. setosum-b) and Indo-West Pacific populations (D. setosum-a), supported by a significant genetic divergence value ranging from 6.3% to 9.1%. This study also revealed notable levels of nucleotide and population subdivision between the D. setosum from the Indo-West Pacific and the Red Sea populations (Nst = 0.891; Fst = 0.886) with a low number of migrants per generation (Nm = 0.065). This may suggest geographic isolation due to ecological factors preventing each other from surviving in the territory of the other, or that the two clades of D. setosum were a separate species. Additional morphological and molecular analysis is required in the future to ascertain the level of divergence and further resolve the taxonomic confusion within the genus Diadema.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Artüz, M.L. & Artüz, O.B. 2019. First and northernmost record of Diadema setosum (Leske, 1778) (Echinodermata: Echinoidea: Diadematidae) in the Sea of Marmara. Thalassas: An International Journal of Marine Sciences, 35(2): 375-379. DOI: https://doi.org/10.1007/s41208-019-00137-3

Baker, H.G. 1967. Support for Baker's law-as a rule. Evolution, 21(4): 853-856. DOI: https://doi.org/10.1111/j.1558-5646.1967.tb03440.x

Bronstein, O. & Kroh, A. 2018. Needle in a haystack-genetic evidence confirms the expansion of the alien echinoid Diadema setosum (Echinoidea: Diadematidae) to the Mediterranean coast of Israel. Zootaxa, 4497(4): 593-599. DOI: https://doi.org/10.11646/zootaxa.4497.4.9

Bronstein, O., Georgopoulou, E. & Kroh, A. 2017. On the distribution of the invasive long-spined echinoid Diadema setosum and its expansion in the Mediterranean Sea. Marine Ecology Progress Series, 583: 163-178. DOI: https://doi.org/10.3354/meps12348

Chow, S., Kajigaya, Y., Kurogi, H., Niwa, K., Shibuno, T., Nanami, A. & Kiyomoto, S. 2014. On the fourth Diadema species (Diadema-sp) from Japan. PLoS One, 9(7): e102376. DOI: https://doi.org/10.1371/journal.pone.0102376

Chow, S., Konishi, K., Mekuchi, M., Tamaki, Y., Nohara, K., Takagi, M., Niwa, K., Teramoto, W., Manabe, H., Kurogi, H., Suzuki, S., Ando, D., Jinbo, T., Kiyomoto, M., Hirose, M., Shimomura, M., Kurashima, A., Ishikawa, T. & Kiyomoto, S. 2016. DNA barcoding and morphological analyses revealed validity of Diadema clarki Ikeda, 1939 (Echinodermata, Echinoidea, Diadematidae). Zookeys, 585: 1-16. DOI: https://doi.org/10.3897/zookeys.585.8161

Clemente, S., Hernandez, J. C., Toledo, K., and Brito, A. 2007. Predation upon Diadema aff. antillarum at barrens grounds in the Canary Islands. Scientia Marina, 71: 745-754. DOI: https://doi.org/10.3989/scimar.2007.71n4745

Do Hung Dang, V., Fong, C.L., Shiu, J.H. & Nozawa, Y. 2020. Grazing effects of sea urchin Diadema savignyi on algal abundance and coral recruitment processes. Scientific Reports, 10(1): 20346. DOI: https://doi.org/10.1038/s41598-020-77494-0

Doyle, J.J. & Doyle, J.L. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochemical Bulletin, 1: 11-15.

Hernandez, J.C., Brito, A., Cubero, E., Garcı'a, N., Girard, D., Gonza'lez-Lorenzo, G. & Falco'n, J.M. 2006. Temporal patterns of larval settlement of Diadema antillarum (Echinodermata: Echinoidea) in the Canary Islands using an experimental larval colllector. Bulletin of Marine Science, 78: 271-279.

Hudson, R.R., Slatkin, M. & Maddison, W.P. 1992. Estimation of levels of gene flow from DNA sequence data. Genetics, 132(2): 583-589. DOI: https://doi.org/10.1093/genetics/132.2.583

Huelsenbeck, J.P. & Hill, J.E. 1993. Success of phylogenetic methods in the four-taxon case. Systematic Biology, 42: 247-264. DOI: https://doi.org/10.1093/sysbio/42.3.247

Kimura, M. 1980. Kimura's two-parameter model of Models of DNA Evolution. In: Inferring Phylogenies. J. Felsenstein (Ed.). Sinauer Associates Inc, Sunderland, Massachusetts.

Lessios, H.A., Kessing, B.D. & Pearse, J.S. 2001. Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution, 55: 955-975. DOI: https://doi.org/10.1554/0014-3820(2001)055[0955:PSASIT]2.0.CO;2

Lessios, H.A., Lockhart, S., Collin, R., Sotil, G., Sanchez-Jerez, P., Zigler, K.S., Perez, A.F., Garrido, M.J., Geyer, L.B., Bernardi, G., Vacquier, V.D., Haroun, R. & Kessing, B.D. 2012. Phylogeography and bindin evolution in Arbacia, a sea urchin genus with an unusual distribution. Molecular Ecology, 21: 130-144. DOI: https://doi.org/10.1111/j.1365-294X.2011.05303.x

Librado, P. & Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451-1452. DOI: https://doi.org/10.1093/bioinformatics/btp187

Lynch, M. & Crease, T.J. 1990. The analysis of population survey data on DNA sequence variation. Molecular Biology and Evolution, 7(4): 377-394.

Mongiardino Koch, N., Coppard, S.E., Lessios, H. A., Briggs, D.E., Mooi, R. & Rouse, G.W. 2018. A phylogenomic resolution of the sea urchin tree of life. BMC Evolutionary Biology, 18: 189. DOI: https://doi.org/10.1186/s12862-018-1300-4

Moore, A.M., Tassakka, A.C.M., Ambo-Rappe, R., Yasir, I., Smith, D.J. & Jompa, J. 2019. Unexpected discovery of Diadema clarki in the Coral Triangle. Marine Biodiversity, 49: 2381-2399. DOI: https://doi.org/10.1007/s12526-019-00978-4

Palumbi, S., Martin, A., Romano, S., Mcmilan, W.O., Stice, L. & Grabowski, G. 1991. The simple fool's guide to PCR. Department of Zoology & Kewalo Marine Laboratories, University of Hawaii, Honolulu.

Posada, D. & Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14(9): 817-818. DOI: https://doi.org/10.1093/bioinformatics/14.9.817

Precht, L.L. & Precht, W.F. 2015. The sea urchin Diadema antillarum-keystone herbivore or redundant species?. PeerJ PrePrints, 3: e1565v1. DOI: https://doi.org/10.7287/peerj.preprints.1565

Rodriguez, A., Hernadez, J., Clemente, S. & Coppard, S. 2013. A new species of Diadema (Echinodermata: Echinoidea: Diadematidae) from the eastern Atlantic Ocean and a neotype designation of Diadema antillarum (Phillippi, 1845). Zootaxa, 3636(1): 144-170. DOI: https://doi.org/10.11646/zootaxa.3636.1.6

Ronquist, F. & Huelsenback, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Version 3.0b4. Bioinformatics, 19: 1572-1574. DOI: https://doi.org/10.1093/bioinformatics/btg180

Swofford, D.L. 2000. PAUP. Phylogenetic Analysis Using Parsimony. Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.

Vafidis, D., Antoniadou, C., Voulgaris, K., Varkoulis, A. & Apostologamvrou, C. 2021. Abundance and population characteristics of the invasive sea urchin Diadema setosum (Leske, 1778) in the south Aegean Sea (eastern Mediterranean). Journal of Biological Research-Thessaloniki, 28(1): 11. DOI: https://doi.org/10.1186/s40709-021-00142-9

Vimono, I.B., Borsa, P., Hocdé, R. & Pouyaud, L. 2023. Phylogeography of long-spined sea urchin Diadema setosum across the Indo-Malay Archipelago. Zoological Studies, 62(39): 1-13.

Williams, S.M. 2022. The reduction of harmful algae on Caribbean coral reefs through the reintroduction of a keystone herbivore, the long-spined sea urchin Diadema antillarum. Restoration Ecology, 30(1): e13475. DOI: https://doi.org/10.1111/rec.13475

Published

31-03-2024

How to Cite

Md Shahid, N., & Hassan, R. (2024). Phylogenetic Relationship of Diadema: Emphasis on The Two Distinct Clades of D. Setosum With The Inclusion of Long Spine Black Sea Urchin From Malaysian Borneo. Malaysian Applied Biology, 53(1), 55–65. https://doi.org/10.55230/mabjournal.v53i1.2786

Issue

Section

Research Articles