Low Heating Effects on The Total Microbial Activity and Physico-Chemical Properties of Stingless Bee (Heterotrigona itama) Honey
Keywords:
Microbiological, thermal treatment, microbial activity, apicultural industryAbstract
The high moisture content of stingless bee honey (SBH) is a worrisome problem and heat treatment is used to reduce the moisture and maintain the honey’s quality by destroying the microorganisms that affect the physico-chemical properties of honey during storage. Low heat treatment (45 °C) for 0, 30, 60, 90, and 120 min were conducted to determine the total microbial activity using fluorescein diacetate hydrolysis (FDA). The total microbial population that subsequently affected the physico-chemical properties was also analyzed. The total microbial activities of SBH were significantly reduced after thermal treatment at 45 °C for 90 min (63.76 µg FDA/g/h) and 120 min (62.43 µg FDA/g/h) compared with control (67.127 µg FDA/g/h). Also, the moisture content, electrical conductivity (EC), pH, and free acidity of the heat-treated SBH at all durations were significantly reduced compared with the control. The total microbial activity was detected as significantly correlated to bacterial and fungal populations, moisture content, EC, pH, and free acidity of low heat-treated SBH. Low heat treatment at 45 °C for 120 min was efficient to reduce the total microbial activity, and total acidity, and increasing the pH of SBH. Prolonging the heating duration is suggested to further reduce the water content, and total microbial activity and further increase the shelf life of SBH.
Downloads
Metrics
References
Al-Khalifa, A.S. & Al-Arify, I.A. 1999. Physicochemical characteristics and pollen spectrum of some Saudi honeys. Food Chemistry, 67: 21-25. DOI: https://doi.org/10.1016/S0308-8146(99)00096-5
Akbulut, M., Özcan, M.M., & Coklar, H. 2009. Evaluation of antioxidant activity, phenolic, mineral contents and some physicochemical properties of several pine honeys collected from Western Anatolia. International Journal of Food Sciences and Nutrition, 60: 577–589. DOI: https://doi.org/10.3109/09637480801892486
Anupama, D., Bhat, K.K. & Sapna, V.K. 2003. Sensory and physicochemical properties of commercial samples of honey. Food Research International, 36: 183-191. DOI: https://doi.org/10.1016/S0963-9969(02)00135-7
Ayansola, A.A. & Banjo, A.D. 2002. Microbiological examination of honey marketed in Southwestern Nigeria. Journal of Basic Applied Science Research, 2: 1701-1705.
Bijlsma, L., Martens, E. & Sommeijer, M.J. 2006. Water content of stingless bee honeys (Apidae, Meliponini): Interspecific variation and comparison with honey of Apis mellifera. Apidologie, 37(4): 480-486. DOI: https://doi.org/10.1051/apido:2006034
Bogdanov S., Martin P., Lüllmann C., Borneck R., Vorwohl G., Russmann H., Persano L., Sabatini A.G., Marcazzan G.L., Morlot M., Heretier J., Flamini C.H., Marioleas P., Tsigouri A., Kerkvliet J., Ortiz A. & Ivanov T.Z. 2002. Harmonised methods of the European Honey Commission. International Honey Commission, 18(2): 81-87.
Chuttong, B., Chanbang, Y., Sringarm, K., & Burgett, M. 2016. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chemistry, 192: 149-155. DOI: https://doi.org/10.1016/j.foodchem.2015.06.089
Contrera, F.A.L., Menezes, C. & Vebturieri, G.C. 2011. New horizons on stingless beekeeping (apidae, Meliponini). Evista Brasileira de Zootecnia, 40: 48-51.
Eshete, Y. & Eshete, T. 2019. A review on the effect of processing temperature and time duration on commercial honey quality. Madridge Journal of Food Technology, 4(1): 158-162. DOI: https://doi.org/10.18689/mjft-1000124
Esti, M., Panfili, G., Marconi, E. & Trivisonno, M. 1997. Valorisation of the honeys from the Molise region through physicochemical, organoleptical and nutritional assessment. Food Chemistry, 58(1-2): 125-128. https://doi.org/10.1016/S0308-8146(96)00228-2 DOI: https://doi.org/10.1016/S0308-8146(96)00228-2
Finola, M.S., Lasagno, M.C. & Marioli, J.M. 2007. Microbiological and chemical characterization of honeys from central Argentina. Food Chemistry, 100:1649–1653. DOI: https://doi.org/10.1016/j.foodchem.2005.12.046
Fontvieille, D.A., Outaguerouine, A. & Thevenot, D.R. 1991. Fluorescein diacetate hydrolysis as a measure of microbial activity in aquatic systems: Application to activated sludges. Environmental Technology, 13(6): 531-540. https://doi.org/10.1080/0959333920938518 DOI: https://doi.org/10.1080/09593339209385181
Guo, W., Liu, Y., Zhu, X. & Wang, S. 2011. Dielectric properties of honey adulterated with sucrose syrup. Journal of Food Engineering, 107(1): 1-7. DOI: https://doi.org/10.1016/j.jfoodeng.2011.06.013
Halwany, W., Hakim, S.S., Rahmanto, B., Wahyuningtyas, R.S., Siswadi, Andriani, S. & Lestari, F. 2020. A simple reducing water content technique for stingless bee honey (Heterotrigona itama) in South Kalimantan. IOP Conference Series: Materials Science and Engineering. 935 (2020):1-6. DOI: https://doi.org/10.1088/1757-899X/935/1/012011
Kuplulu, O. 2006. Incidence of Clostridium botulinum spores in honey in Turkey. Food Control, 17(3): 222-224. DOI: https://doi.org/10.1016/j.foodcont.2004.10.004
Küçük, M., Kolaylı, S., Karaoğlu, S., Ulusoy, E., Baltacı, C. & Candan, F. 2007. Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chemistry, 100: 526-534. DOI: https://doi.org/10.1016/j.foodchem.2005.10.010
Lim, D.C.C., Abu Bakar, M.F. & Majid, M. 2019. Nutritional composition of stingless bee honey from different botanical origins. International Conference on Biodiversity 2018 IOP Conf. Series: Earth and Environmental Science: 269 (2019): 1-5. DOI: https://doi.org/10.1088/1755-1315/269/1/012025
Lucero, H., Tosi, E., Ciappini, M. & Re, E. 2002. Honey thermal treatment effects on hydroxymethylfurfural content. Food Chemistry, 77: 71–74. DOI: https://doi.org/10.1016/S0308-8146(01)00325-9
Mohammed Hassan, N.A., Raja Ibrahim, R.K., Maisarah, D., Zakaria, Z., Ihsan, N. & Fauziah, T.A. 2021. Profiling pH and moisture content of stingless bee honey in closed and opened cerumen honey pots. In: International Laser Technology and Optics Symposium in Conjunction with Photonics Meeting 2020 (ILATOSPM 2020). Johor, Malaysia. DOI: https://doi.org/10.1088/1742-6596/1892/1/012032
Moreira, R.F.A., Maria, C.A.B.D., Pietroluongo, M. & Trugo, L. C. 2010. Chemical changes in the volatile fractions of Brazilian honeys during storage under tropical conditions. Food Chemistry, 121(3): 697-704. DOI: https://doi.org/10.1016/j.foodchem.2010.01.006
Ng, L.C., Sariah, M., Sariam, O., Radziah, O., & Zainal Abidin, M.A. 2015. PGPM-induced defense-related enzymes in aerobic rice against rice leaf blast caused by Pyricularia oryzae. European Journal of Plant Pathology, 145: 167-175. DOI: https://doi.org/10.1007/s10658-015-0826-1
Ngalimat, M.S., Abd, R.N.Z.R., Raja Abd Rahman, R.N.Z., Yusof, M.T., Syahir, A. & Sabri, S. 2019. Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. PeerJ, 7(7478): 1-20. DOI: https://doi.org/10.7717/peerj.7478
Ngoi & Vivian. 2016. Effect of Processing Treatment on Antioxidant, Physicochemical and Enzymatic Properties of Honey (Trigona spp.) (Bachelor Degree). Universiti Tunku Abdul Rahman.
Nguyen T.H.N, Ng, L.C. & Nuntavun, R. 2018. The effects of Bio-fertilizer and liquid organic fertilizer on the growth of vegetables in the pot experiment. Chiang Mai Journal of Science, 45(3): 1257-1273.
Oddo, L.P., Heard, T.A., Rodríguez-Malaver, A., Pérez, R.A., Fernández-Muiño, M., Sancho, M.T., Sesta, G., Lusco, L. & Vit, P. 2008. Composition and antioxidant activity of Trigona carbonaria honey from Australia. Journal of Medicine Food, 11(4): 789-94. DOI: https://doi.org/10.1089/jmf.2007.0724
Osmojasola, P.F., 2002. The antibacterial effect of honey on bacteria isolated from infected wound in Ilorin, Nigeria. Nigeria Society for Experimental Biology Journal, 2: 109-112.
Prica, N., Zivkov-Balos, M., Jaksic, S., Mihaljev, Z., Kartalovic, B., Babic, J. & Savic, S. 2014. Moisture and acidity as indicators of the quality of honey originating from Vojvodina region. Arhiv Veterinarske Medicine, 7(2): 99-109. DOI: https://doi.org/10.46784/e-avm.v7i2.135
Rosli, F.N., Hazemi, M.H.F., Akbar, M.A., Basir, S., Kassim, H. & Bunawan, H. 2020. Stingless bee honey: Evaluating its antibacterial activity and bacterial diversity. Insects, 11(8): 500. DOI: https://doi.org/10.3390/insects11080500
Saric, G., Markovic, K., Vukicevic, D., Lez, E., Hruskar, M. & Vahcic, N. 2013. Changes of antioxidant activity in honey after heat treatment. Czech Journal of Food Science, 31: 601-606. DOI: https://doi.org/10.17221/509/2012-CJFS
Schnürer, J. & Rosswall, T. 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied Environmental Microbiology, 43(6): 1256-61. DOI: https://doi.org/10.1128/aem.43.6.1256-1261.1982
Silva, P.M., Gauche, C., Gonzaga, L.V., Costa, A.C.O. & Fett, R. 2016. Honey: Chemical composition, stability and authenticity. Food Chemistry, 196: 309-323. DOI: https://doi.org/10.1016/j.foodchem.2015.09.051
Sancho, M.T., Muniategui, S., Huidobro, J.F. & Simal Lozano, J. 1992. Aging of honey. Journal of Agricultural and Food Chemistry, 40: 132–138. DOI: https://doi.org/10.1021/jf00013a026
Singh, N. & Bath, P.K. 1997. Quality evaluation of different types of Indian honey. Food Chemistry, 58: 129-133. DOI: https://doi.org/10.1016/S0308-8146(96)00231-2
Snowdon, J.A. & Cliver, D.O. 1996. Microorganisms in honey. International Journal of Food Microbiology, 31:1–26. DOI: https://doi.org/10.1016/0168-1605(96)00970-1
Souza, B., Roubik, D., Barth, O., Heard, T., Enriquez, E., Carvalho, C., Villas-Boas, J., Marchini, L., Locatelli, J., Persano-Oddo, L., Almeida-Muradian, L., Bogdanov, S. & Vit, P. 2006. Composition of Stingless bee honey: setting Quality Standards. Interciencia, 31(12): 867-875.
Suárez-Luque, S., Mato, I., Huidobro, J. F., Simal-Lozano, J. & Teresa Sancho, M. 2002. Rapid determination of minority organic acids in honey by high-performance liquid chromatography. Journal of Chromatography, 955(2): 207-214. DOI: https://doi.org/10.1016/S0021-9673(02)00248-0
Terrab, A., Gonzalez, A. G., Díez, M. J., & Heredia, F. J. 2003. Mineral content and electrical conductivity of the honeys produced in Northwest Morocco and their contribution to the characterisation of unifloral honeys. Journal of the Science of Food and Agriculture, 83(7): 637-643. DOI: https://doi.org/10.1002/jsfa.1341
Thawai, C., Tanasupawat, S., Itoh, T., Suwanborirux, K. & Kudo, T. 2004. Micromonospora auratinigra sp. Nov, isolated from a peat swamp forest in Thailand. Actinomycetologica 18: 8-14. DOI: https://doi.org/10.3209/saj.18_8
Yap, S.K., Chin, N.L., Yusof, Y.A. & Chong, K.Y. 2019. Quality characteristics of dehydrated raw Kelulut honey. International Journal of Food Properties, 22(1): 556-671. DOI: https://doi.org/10.1080/10942912.2019.1590398
Yücel, Y. & Sultanoğlu, P. 2013. Characterization of Hatay honeys according to their multi-element analysis using ICP-OES combined with chemometrics. Food Chemistry, 140(1): 231–237. DOI: https://doi.org/10.1016/j.foodchem.2013.02.046
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission