Oxidative Stress and Activation of Enzymatic Antioxidative Defence Mechanism in Tetraselmis chui
Keywords:
Antioxidants, microalgae, oxidative stress, Tetraselmis chui, reactive oxygen speciesAbstract
Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS) and an organism's ability to detoxify these harmful intermediates, posing a significant challenge for aquatic organisms, including microalgae. Tetraselmis chui has developed defence mechanisms to manage oxidative stress, ensuring its survival and functionality in various ecosystems. This study explores the interactions between the growth, oxidative stress markers and the activation of enzymatic antioxidative defence systems in T. chui after 8 days of incubation. T. chui was cultured in F2 media and subjected to variations in media strength (F/2, F, F/4 and F/8), sucrose concentrations (0 to 50 g/L), pH (5 to 9), and light intensities (0 to 600 lux). Growth was highest in full-strength media and improved with 40 g/L sucrose addition. Growth was largely unaffected by pH, except at pH 5, which reduced it, while higher light intensities boosted fresh and dry weights. Full-strength media led to significant MDA and H2O2 accumulation, while F/2 media exhibited higher ion leakage. The absence of sucrose increased H2O2 and ion leakage but lowered MDA, whereas higher sucrose concentrations raised MDA while reducing ion leakage. pH 7 stimulated MDA production, with H2O2 concentrations largely unchanged except in controls. Cells grown in darkness showed elevated MDA and ion leakage but reduced H2O2. CAT and APX activities were significantly enhanced in F/8 media, while gPOD was highest in full-strength media. Sucrose-free media induced CAT and APX but reduced gPOD activity. All enzyme activities were most strongly induced at pH 9. Light intensity at 150 lux favoured CAT and gPOD, whereas APX was more active in dark conditions. These findings unveil the strategies employed by T. chui in response to oxidative stress, highlighting its ecological adaptability and contributing to its potential to produce antioxidants for various industrial applications.
Downloads
Metrics
References
Abdel-Kader, H.A.A., Yousef, N., Hossain, M.A. & Dawood, M.F.A. 2023. Lipid production, oxidative status, antioxidant enzymes and photosynthetic efficiency of Coccomyxa chodatii SAG 216-2 in response to calcium oxide nanoparticles. Phyton, 92(7): 1955-1974. DOI: https://doi.org/10.32604/phyton.2023.028583
Agrawal, R. & Patwardhan, M.V. 1993. Production of peroxidase enzyme by callus cultures of Citrus aurantifolia S. Journal of the Science of Food and Agriculture, 61(3): 377-378. DOI: https://doi.org/10.1002/jsfa.2740610316
Alexieva, V., Sergiev, I., Mapelli, S. & Karanov, E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24: 1337–1344. DOI: https://doi.org/10.1046/j.1365-3040.2001.00778.x
Andreeva, A., Budenkova, E., Babich, O., Sukhikh, S., Dolganyuk, V., Michaud, P. & Ivanova, S. 2021. Influence of carbohydrate additives on the growth rate of microalgae biomass with an increased carbohydrate content. Marine Drugs, 19: 381. DOI: https://doi.org/10.3390/md19070381
Anwar, S., Alrumaihi, F., Sarwar, T., Babiker, A.Y., Khan, A.A., Prabhu, S.V. & Rahmani, A.H. 2024. Exploring therapeutic potential of catalase: strategies in disease prevention and management. Biomolecules, 14(6): 697. DOI: https://doi.org/10.3390/biom14060697
Apel, K. & Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55: 373-399. DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141701
Aratboni, A.H., Rafiei, N., Garcia-Granados, R., Alemzadeh, A. & Morones-Ramírez, J.R. 2019. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factory, 8(1): 178. DOI: https://doi.org/10.1186/s12934-019-1228-4
Asaeda, T., Senavirathna, M.D.H.J. & Vamsi-Krishna, L. 2020. Evaluation of habitat preference of invasive macrophyte Egeria densa in different channel slopes using hydrogen peroxide as an indicator. Frontiers in Plant Science, 11: 422. DOI: https://doi.org/10.3389/fpls.2020.00422
Ayala, A., Muñoz, M.F. & Argüelles, S. 2014. Lipid peroxidation: production, metabolism, and signalling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014: 360438. DOI: https://doi.org/10.1155/2014/360438
Bajwa, K., Bishnoi, N.R., Kirrollia, A. & Selvan, S.T. 2018. A new lipid rich microalgal SP Scenedesmus dimorphus isolated: Nile red staining and effect of carbon, nitrogen sources on its physio-biochemical components. European Journal of Sustainability and Development, 2: 43. DOI: https://doi.org/10.20897/ejosdr/3911
Bashir, K.M.I., Mansoor, S., Kim, N.R., Grohmann, F.R., Ali Shah, A. & Cho, M.G. 2019. Effect of organic carbon sources and environmental factors on cell growth and lipid content of Pavlova lutheri. Annals of Microbiology, 69: 353–368. DOI: https://doi.org/10.1007/s13213-018-1423-2
Ben Ouada, S., Ben Ali, R., Leboulanger, C., Ben Ouada, H. & Sayadi, S. 2018. Effect of bisphenol A on the extremophilic microalgal strain Picocystis sp. (Chlorophyta) and its high BPA removal ability. Ecotoxicology and Environmental Safety, 158: 1–8. DOI: https://doi.org/10.1016/j.ecoenv.2018.04.008
Bolouri-Moghaddam, M.R., Le Roy, K., Xiang, L., Rolland, F. & van den Ende, W. 2010. Sugar signalling and antioxidant network connections in plant cells. FEBS Journal, 277: 2022–2037. DOI: https://doi.org/10.1111/j.1742-4658.2010.07633.x
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. DOI: https://doi.org/10.1006/abio.1976.9999
Chen, S., Li, X., Ma, X., Qing, R., Chen, Y., Zhou, H., Yu, Y., Li, J. & Tan, Z. 2023. Lighting the way to sustainable development: physiological response and light control strategy in microalgae-based wastewater treatment under illumination. Science of the Total Environment, 903: 166298. DOI: https://doi.org/10.1016/j.scitotenv.2023.166298
Chia, S.R., Ong, H.C., Chew, K.W., Show, P.L., Phang, S.M., Ling, T.C., Nagarajan, D., Lee, D.J. & Chang, J.S. 2018. Sustainable approaches for algae utilisation in bioenergy production. Renewable Energy, 129: 838-852. DOI: https://doi.org/10.1016/j.renene.2017.04.001
Chokshi, K., Pancha, I., Ghosh, A. & Mishra, S. 2017. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotechnology for Biofuels, 10: 60. DOI: https://doi.org/10.1186/s13068-017-0747-7
Clairborne, A. 1985. Catalase activity. In: Handbook of Method for Oxygen Radical Research. E.A. Greenwald (Ed.). CRS Press, Boca Raton. 467 pp.
Córdova, O., Ruiz-Filippi, G., Fermoso, F.G. & Chamy, R. 2018. Influence of growth kinetics of microalgal cultures on biogas production. Renewable Energy, 122(1): 455-459. DOI: https://doi.org/10.1016/j.renene.2018.01.125
Correia, B., Valledor, L., Meijón, M., Rodriguez, J.L., Dias, M.C., Santos, C., Cañal, M.J., Rodriguez, R. & Pinto, G. 2013. Is the interplay between epigenetic markers related to the acclimation of cork oak plants to high temperatures? PLoS ONE, 8: e53543. DOI: https://doi.org/10.1371/journal.pone.0053543
Coulombier, N., Jauffrais, T. & Lebouvier, N. 2021. Antioxidant compounds from microalgae: a review. Marine Drugs, 19: 549. DOI: https://doi.org/10.3390/md19100549
Daneshvar, E., Sik Ok, Y., Tavakoli, S., Sarkar, B., Shaheen, S.M., Hong, H., Luo, Y., Rinklebe, J., Song, H. & Bhatnagar, A. 2021. Insights into upstream processing of microalgae: a review. Bioresource Technology, 329: 124870. DOI: https://doi.org/10.1016/j.biortech.2021.124870
Deng, X.Y., Cheng, J., Hu, X.L., Wang, L., Li, D. & Gao, K. 2017. Biological effects of TiO₂ and CeO₂ nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Science of the Total Environment, 575: 87–96. DOI: https://doi.org/10.1016/j.scitotenv.2016.10.003
Dolganyuk, V., Belova, D., Babich, O., Prosekov, A., Ivanova, S., Katserov, D., Patyukov, N. & Sukhikh, S. 2020. Microalgae: a promising source of valuable bioproducts. Biomolecules, 10(8): 1153. DOI: https://doi.org/10.3390/biom10081153
Du, F., Hu, C., Sun, X. & Xu, N. 2021. Transcriptome analysis reveals pathways responsible for the promoting effect of sucrose on astaxanthin accumulation in Haematococcus pluvialis under high light condition. Aquaculture, 530: 735757. DOI: https://doi.org/10.1016/j.aquaculture.2020.735757
Fal, S., Aasfar, A., Rabie, R., Smouni, A. & Arroussi, H.E. 2022. Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Chlamydomonas reinhardtii. Heliyon, 8: e08811. DOI: https://doi.org/10.1016/j.heliyon.2022.e08811
Foyer, C.H. & Shigeoka, S. 2014. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155: 93-100. DOI: https://doi.org/10.1104/pp.110.166181
Fu, Y.H., He, Y., Phan, K., Bhatia, S., Pickford, R., Wu, P., Dzamko, N., Halliday, G.M. & Kim, W.S. 2022. Increased unsaturated lipids underlie lipid peroxidation in synucleinopathy brain. Acta Neuropathologica Communications, 10: 165. DOI: https://doi.org/10.1186/s40478-022-01469-7
Gauthier, M.R., Senhorinho, G.N.A. & Scott, J.A. 2020. Microalgae under environmental stress as a source of antioxidants. Algal Research, 52: 102104. DOI: https://doi.org/10.1016/j.algal.2020.102104
Gorelova, O., Baulina, O., Ismagulova, T., Kokabi, K., Lobakova, E., Selyakh, I., Semenova, L., Chivkunova, O., Karpova, O., Scherbakov, P., Khozin-Goldberg, I. & Solovchenko, A. 2019. Stress-induced changes in the ultrastructure of the photosynthetic apparatus of green microalgae. Protoplasma, 256: 261–277. DOI: https://doi.org/10.1007/s00709-018-1294-1
Guillard, R.R.L. & Ryther, J.H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2): 229-239. DOI: https://doi.org/10.1139/m62-029
Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals. W.L. Smith & M.H. Chanley (Eds.). Plenum Press, New York. pp. 26-60. DOI: https://doi.org/10.1007/978-1-4615-8714-9_3
Guo, W., Xing, Y., Luo, X., Li, F., Ren, M. & Liang, Y. 2023. Reactive oxygen species: a crosslink between plant and human eukaryotic cell systems. International Journal of Molecular Sciences, 24: 13052. DOI: https://doi.org/10.3390/ijms241713052
Gupta, D.K., Pena, L.B., Romero-Puertas, M.C., Hernández, A., Inouhe, M. & Sandalio, L.M. 2017. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant Cell and Environment, 40(4): 509-526. DOI: https://doi.org/10.1111/pce.12711
Hamed, S.M., Selim, S., Klock, G. & Abd Elgawad, H. 2017. Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses. Ecotoxicology and Environmental Safety, 144: 19–25. DOI: https://doi.org/10.1016/j.ecoenv.2017.05.048
Hasanuzzaman, M., Bhuyan, M.H., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fujita, M. & Fotopoulos, V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8): 681. DOI: https://doi.org/10.3390/antiox9080681
Heath, R.L. & Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125: 189-198. DOI: https://doi.org/10.1016/0003-9861(68)90654-1
Ighodaro, O.M. & Akinloye, O.A. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54: 287–293. DOI: https://doi.org/10.1016/j.ajme.2017.09.001
Ismaiel, M.M.S., El-Ayouty, Y.M. & Piercey-Normore, M. 2016. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis. Brazilian Journal of Microbiology, 47(2): 298-304. DOI: https://doi.org/10.1016/j.bjm.2016.01.003
Jareonsin, S. & Pumas, C. 2021. Advantages of heterotrophic microalgae as a host for phytochemicals production. Frontiers in Bioengineering and Biotechnology, 9: 628597. DOI: https://doi.org/10.3389/fbioe.2021.628597
Kasan, N.A., Hashim, F.S., Haris, N., Zakaria, M.F., Mohamed, N.N., Rasdi, N.W., Wahid, M.E.A., Takahashi, K. & Jusoh, M. 2020. Isolation of freshwater and marine indigenous microalgae species from Terengganu water bodies for potential uses as live feeds in aquaculture industry. International Aquatic Research, 12(1): 74-83.
Keunen, E., Peshev, D., Vangronsveld, J., Van Den Ende, W. & Cuypers, A. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, Cell and Environment, 36: 1242–1255. DOI: https://doi.org/10.1111/pce.12061
Kim, Z.H., Park, H., Kim, B., Lee, C.G., Lee, J. & Lee, S. 2020. Effects of light intensity and photoperiod on the growth rate and lipid productivity of Tetraselmis sp. M8. Algal Research, 52: 102091.
Koletti, A., Skliros, D., Kalloniati, C., Marka, S., Zografaki, M.E., Infante, C., Mantecón, L. & Flemetakis, E. 2024. Global omics study of Tetraselmis chuii reveals time-related metabolic adaptations upon oxidative stress. Applied Microbiology and Biotechnology, 108: 138. DOI: https://doi.org/10.1007/s00253-023-12936-z
Kong, W., Song, H., Cao, Y., Yang, H., Hua, S. & Xia, C. 2011. The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. African Journal of Biotechnology, 10(55): 11620-11630.
Li, K.Q., Li, M., He, Y.F., Gu, X.Y., Pang, K., Ma, Y.P. & Lu, D.L. 2020. Effects of pH and nitrogen form on Nitzschia closterium growth by linking dynamic with enzyme activity. Chemosphere, 249: 126154. DOI: https://doi.org/10.1016/j.chemosphere.2020.126154
Li, X., Xu, H. & Wu, Q. 2007. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98: 764–771. DOI: https://doi.org/10.1002/bit.21489
Liu, X.Y., Hong, Y., Zhao, G.P., Zhang, H.K., Zhai, Q.Y. & Wang, Q. 2022. Microalgae-based swine wastewater treatment: strain screening, conditions optimization, physiological activity and biomass potential. Science of the Total Environment, 807: 151008. DOI: https://doi.org/10.1016/j.scitotenv.2021.151008
López-Hernandez, J.F., Garcia-Alamila, P., Kirschtel, D., Palma-Ramirez, D., Álvarez-González, C.A., Paredes-Rojas, J.C. & Marquez-Rocha, F.J. 2020. Continuous microalgae cultivation for antioxidants production. Molecules, 25(18): 4171. DOI: https://doi.org/10.3390/molecules25184171
Lu, Q., Li, H., Zou, Y., Liu, H. & Yang, L. 2021. Astaxanthin as a microalgal metabolite for aquaculture: a review on the synthetic mechanisms, production techniques, and practical application. Algal Research, 54: 102178. DOI: https://doi.org/10.1016/j.algal.2020.102178
Mathew, R.T., Alkhamis, Y.A., Rahman, S.M. & Alsaqufi, A.S. 2021. Effects of microalgae Chlorella vulgaris density on the larval performances of freshwater prawn Macrobrachium rosenbergii (De Man, 1879). Indian Journal of Animal Research, 55: 303–309. DOI: https://doi.org/10.18805/IJAR.B-1335
Mavrommatis, A., Tsiplakou, E., Zerva, A., Pantiora, P.D., Georgakis, N.D., Tsintzou, G.P., Madesis, P. & Labrou, N.E. 2023. Microalgae as a sustainable source of antioxidants in animal nutrition, health and livestock development. Antioxidants, 12: 1882. DOI: https://doi.org/10.3390/antiox12101882
Mishra, A. & Jha, B. 2011. Antioxidant response of the microalga Dunaliella salina under salt stress. Botanica Marina, 54(2): 195-199. DOI: https://doi.org/10.1515/bot.2011.012
Mohamed, Z. 2008. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology, 17: 504–516. DOI: https://doi.org/10.1007/s10646-008-0204-2
Montoya-Vallejo, C., Guzmán, Duque, F.L. & Díaz, Q.J.C. 2023. Biomass and lipid production by the native green microalgae Chlorella sorokiniana in response to nutrients, light intensity, and carbon dioxide: experimental and modelling approach. Frontiers in Bioengineering and Biotechnology, 11: 1149762. DOI: https://doi.org/10.3389/fbioe.2023.1149762
Nakano, Y. & Asada, K. 1980. Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant Cell Physiology, 21: 1295-1307. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076128
Nandi, P. 2024. Algae product research report information [WWW Document]. URL https://www.marketresearchfuture.com/reports/algae-products-market-4730 (accessed 2.21.24).
Nimse, S.B. & Pal, D. 2015. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5: 27986–28006. DOI: https://doi.org/10.1039/C4RA13315C
Noctor, G. & Foyer, C.H. 2016. Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiology, 171(3): 1581-1592. DOI: https://doi.org/10.1104/pp.16.00346
Norhayati, Y., Nurul Shafiqa, Y., Malinna, J., Hazlina, A.Zakeri & Nurfarha, M.Z. 2023. Growth, pigments production and phytochemicals variation in Tetraselmis chui under different cultivation parameters. International Aquatic Research, 15: 299–311.
Nzayisenga, J.C., Farge, X., Groll, S.L. & Sellstedt, A. 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels, 13: 4. DOI: https://doi.org/10.1186/s13068-019-1646-x
Pagels, F., Amaro, H.M., Tavares, T.G., Casal, S., Malcata, F.X., Souto-Pinto, I. & Guedes, A.C. 2021. Effects of irradiance of red and blue: red LEDs on Scenedesmus obliquus M2-1 optimization of high added value compounds. Journal of Applied Phycology, 33(3): 1379-1388. DOI: https://doi.org/10.1007/s10811-021-02412-4
Paterson, S., Gómez-Cortés, P., de la Fuente, M.A. & Hernández-Ledesma, B. 2023. Bioactivity and digestibility of microalgae Tetraselmis sp. and Nannochloropsis sp. as basis of their potential as novel functional foods. Nutrients, 15(2): 477. DOI: https://doi.org/10.3390/nu15020477
Patrinou, V., Daskalaki, A., Kampantais, D., Kanakis, D.C., Economou, C.N., Bokas, D., Kotzamanis, D., Aggelis, G., Vayenas, D.V. & Tekerlekopoulou, A.G. 2022. Optimisation of cultivation conditions for Tetraselmis striata and biomass quality evaluation for fish feed production. Water, 14: 3162. DOI: https://doi.org/10.3390/w14193162
Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E. & Bashan, Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45: 11-36. DOI: https://doi.org/10.1016/j.watres.2010.08.037
Procházková, G., Brányiková, I., Zachleder, V. & Brányik, T. 2014. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. Journal of Applied Phycology, 26: 1359–1377. DOI: https://doi.org/10.1007/s10811-013-0154-9
Qiu, R., Gao, S., Lopez, P.A. & Ogden, K.L. 2017. Effects of pH on cell growth, lipid production and CO₂ addition of microalgae Chlorella sorokiniana. Algal Research, 28: 192–199. DOI: https://doi.org/10.1016/j.algal.2017.11.004
Rahman, N.A., Khatoon, H., Yusuf, N., Banerjee, S., Haris, N.A., Lananan, F. & Tomoyo, K. 2017. Tetraselmis chuii biomass as a potential feed additive to improve survival and oxidative stress status of Pacific white-leg shrimp Litopenaeus vannamei postlarvae. International Aquatic Research, 9(3): 235-247. DOI: https://doi.org/10.1007/s40071-017-0173-2
Rajivgandhi, G., Ramachandran, G., Chelliah, C.K., Maruthupandy, M., Quero, F.S.V., Vijayalakshmif, S., AL-Mekhlafi, F.A., Wadaan, M.A., Ranjitha, J. & Li, W.J. 2022. Green microalgal strain Chlorella vulgaris isolated from industrial wastewater with remediation capacity. Environmental Technology & Innovation, 28: 102597. DOI: https://doi.org/10.1016/j.eti.2022.102597
Ranjan, R., Kumar, N., Gautam, A., Dubey, A.K., Pandey, S.N. & Mallick, S. 2021. Chlorella sp. modulates the glutathione mediated detoxification and S-adenosylmethionine dependent methyltransferase to counter arsenic toxicity in Oryza sativa L. Ecotoxicology and Environmental Safety, 208: 111418. DOI: https://doi.org/10.1016/j.ecoenv.2020.111418
Rastogi, R.P., Madamwar, D., Nakamoto, H. & Incharoensakdi, A. 2019. Resilience and self-regulation processes of microalgae under UV radiation stress. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 40: 55-82. DOI: https://doi.org/10.1016/j.jphotochemrev.2019.100322
Ren, H.Y., Liu, B.F., Ma, C., Zhao, L. & Ren, N.Q. 2013. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnology for Biofuels, 6: 143-153. DOI: https://doi.org/10.1186/1754-6834-6-143
Reshma, R. & Arumugam, M. 2022. Organic selenium fortification in edible marine microalga Nannochloropsis oceanica CASA CC201 for food and feed applications. Algal Research, 66: 102787. DOI: https://doi.org/10.1016/j.algal.2022.102787
Rezayian, M., Niknam, V. & Ebrahimzadeh, H. 2019. Oxidative damage and antioxidative system in algae. Toxicology Reports, 6: 1309–1313. DOI: https://doi.org/10.1016/j.toxrep.2019.10.001
Ruiz-Domínguez, M.C., Vaquero, I., Obregón, V., de la Morena, B., Vílchez, C. & Vega, J.M. 2015. Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation. Journal of Applied Phycology, 27: 1099–1108. DOI: https://doi.org/10.1007/s10811-014-0403-6
Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M. & Hasanuzzaman, M. 2021. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants, 10(2): 277. DOI: https://doi.org/10.3390/antiox10020277
Sahastrabuddhe, A.P. 2016. Counting of RBC and WBC using image processing: a review. International Journal of Research in Engineering and Technology, 5(05): 356-360. DOI: https://doi.org/10.15623/ijret.2016.0505067
Sakihama, Y., Cohen, M.F., Grace, S.C. & Yamasaki, H. 2002. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology, 177: 67-80. DOI: https://doi.org/10.1016/S0300-483X(02)00196-8
Sies, H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biology, 11: 613-619. DOI: https://doi.org/10.1016/j.redox.2016.12.035
Singh, P., Kumari, S., Guldhe, A., Misra, R., Rawat, I. & Bux, F. 2016. Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renewable and Sustainable Energy Reviews, 55: 1–16. DOI: https://doi.org/10.1016/j.rser.2015.11.001
Singh, R., Upadhyay, A.K., Singh, D.V., Singh, J.S. & Singh, D.P. 2019. Photosynthetic performance, nutrient status and lipid yield of microalgae Chlorella vulgaris and Chlorococcum humicola under UV-B exposure. Current Research in Biotechnology, 1: 65–77. DOI: https://doi.org/10.1016/j.crbiot.2019.10.001
Singh, R.P., Yadav, P., Kumar, A., Hashem, A., Avila-Quezada, G.D., Abd_Allah, E.F. & Gupta, R.K. 2023. Salinity-induced physiochemical alterations to enhance lipid content in oleaginous microalgae Scenedesmus sp. BHU1 via two-stage cultivation for biodiesel feedstock. Microorganisms, 11(8): 2064. DOI: https://doi.org/10.3390/microorganisms11082064
Solovchenko, A., Plouviez, M. & Khozin-Goldberg, I. 2024. Getting grip on phosphorus: potential of microalgae as a vehicle for sustainable usage of this macronutrient. Plants, 13: 1834. DOI: https://doi.org/10.3390/plants13131834
Suh, S.S., Hwang, J., Park, M., Seo, H., Kim, H.S., Lee, J., Moh, S. & Lee, T.K. 2014. Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity. Marine Drugs, 12: 5174–5187. DOI: https://doi.org/10.3390/md12105174
Tan, B.L., Norhaizan, M.E. & Liew, W.P.P. 2018. Nutrients and oxidative stress: friend or foe? Oxidative Medicine and Cellular Longevity, 2018: 9719584. DOI: https://doi.org/10.1155/2018/9719584
Thepsuthammarat, K., Reungsang, A. & Plangklang, P. 2023. Microalga Coelastrella sp. cultivation on unhydrolyzed molasses-based medium towards the optimization of conditions for growth and biomass production under mixotrophic cultivation. Molecules, 28: 3603. DOI: https://doi.org/10.3390/molecules28083603
Toro, G. & Pinto, M. 2015. Plant respiration under low oxygen. Chilean Journal of Agricultural Research, 75(1): 17-24. DOI: https://doi.org/10.4067/S0718-58392015000300007
Udayan, A., Pandey, A.K., Sirohi, R., Sreekumar, N., Sang, B.I., Sim, S.J., Kim, S.H. & Pande, A. 2023. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochemistry Reviews, 22: 833–860. DOI: https://doi.org/10.1007/s11101-021-09784-y
Velikova, V., Yordanov, I. & Edreva, A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science, 151: 59–66. DOI: https://doi.org/10.1016/S0168-9452(99)00197-1
Wang, S., Wu, Y. & Wang, X. 2016. Heterotrophic cultivation of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with Rhodotorula glutinis. Bioresource Technology, 220: 615–620. DOI: https://doi.org/10.1016/j.biortech.2016.09.010
White, L.H., Martin, D.W., Witt, K.K. & Vogt, F. 2014. Impacts of nutrient competition on microalgae biomass production. Journal of Chemometrics, 28(5): 448-461. DOI: https://doi.org/10.1002/cem.2534
Widjaja, A., Chien, C.C. & Ju, Y.H. 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1): 13–20. DOI: https://doi.org/10.1016/j.jtice.2008.07.007
Wu, Q., Li, Y., Shang, H., Yang, W. & Liu, X. 2021. Influence of pH on biomass and lipid production of Chlorella vulgaris and Scenedesmus obliquus under nitrogen limitation. Journal of Applied Phycology, 33(4): 1965-1972.
Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q. & Cai, Y. 2019. The roles of environmental factors in regulation of oxidative stress in plant. BioMedical Research International, 2019: 9732325. DOI: https://doi.org/10.1155/2019/9732325
Yaakob, M.A., Mohamed, R.M.S.R., Al-Gheethi, A., Aswathnarayana Gokare, R. & Ambati, R.R. 2021. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells, 10: 393. DOI: https://doi.org/10.3390/cells10020393
Yu, H., Kim, J., Rhee, C., Shin, J., Shin, S.G. & Lee, C. 2022. Effects of different pH control strategies on microalgae cultivation and nutrient removal from anaerobic digestion effluent. Microorganisms, 10: 357. DOI: https://doi.org/10.3390/microorganisms10020357
Zhu, J., Yifei, C., Minato, W., Zhengfei, Y., Yongqi, Y., Weiming, F., Yan, X., Taku, O., Ruihui, Y. & Alvin, L.T.Z. 2023. Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: a review. Science of the Total Environment, 896: 165200. DOI: https://doi.org/10.1016/j.scitotenv.2023.165200
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Universiti Malaysia Terengganu
Grant numbers UMT/TAPE-RG-2021/55346











